Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Overview

Omniverse sample scripts

ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/omniverse/ ) のスクリプトのサンプルを貯めていってます。
Omniverseは、データ構造としてUSDを使用してます。
3Dモデルやシーンのファイルへの保存、読み込みでUSDが使用されるだけでなく、
Omniverse CreateやOmniverse ViewなどのOmniverseアプリのビュー上の制御もUSDを介して行われます(形状の表示/非表示の切り替えや移動など)。

ここでは、OmniverseアプリであるOmniverse CreateのScript Editorで試せるスクリプトのサンプルを用途別に列挙します。
Omniverse Create 2021.3.8で確認しました。

開発の参考サイト

Omniverseの情報は、Omniverse Launcherがポータルになっています。
ここのLEARNにチュートリアル動画やドキュメントなどが列挙されています。

NVIDIA Omniverse Developer Resource Center

https://developer.nvidia.com/nvidia-omniverse-developer-resource-center

Omniverse開発の入口となるサイトです。
全体的に何ができて何が重要か、というのは俯瞰して見ることができます。

はじめに

Omniverse Createで、メインメニューの [Window] - [Script Editor]を選択して、Script Editorを起動します。

omniverse_script_editor_01.png

この中でPythonを使用してプログラムを書きます。
左下のRunボタンを押すか、[Ctrl] +[Enter]キーを押すことで実行します。

以下、Pythonの初歩的な説明です。

コメント

1行のコメントの場合、"#"から行の末尾までがコメントになります。

# comment.

複数行の場合は、""" から """ までがコメントになります。

"""
comment.
line2.
"""

print

デバッグ用のメッセージはprintで記載します。

print('Hello Omniverse !')

学習のための知識

機能説明用のサンプル

サンプル 説明
Camera カメラ操作
Geometry ジオメトリの作成
Material マテリアルの割り当て
Math ベクトル/行列計算関連
Operation Ominverseの操作情報を取得/イベント処理
Physics Physics(物理)処理
pip_archive Pythonのよく使われるモジュールの使用
Prim USDのPrim(ノード)の操作
Rendering レンダリング画像の取得
Scene シーン情報の取得
Settings 設定の取得
System システム関連情報の取得
UI UI操作

ツール的なサンプル

サンプル 説明
Samples サンプルスクリプト

Extension

サンプル 説明
Extensions サンプルExtension
You might also like...
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Tesla Light Show xLights Guide With python
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Nvidia Semantic Segmentation monorepo
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Owner
ft-lab (Yutaka Yoshisaka)
ft-lab (Yutaka Yoshisaka)
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

null 8 Nov 1, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 8, 2023
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 2, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 4, 2023
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
LBK 26 Dec 28, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 2, 2022