800 Repositories
Python Adversarial-Reweighting-for-Partial-Domain-Adaptation Libraries
Instance-Dependent Partial Label Learning
Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning
Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.
Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN
This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir
Code for "Generative adversarial networks for reconstructing natural images from brain activity".
Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image
A multi-mode modulator for multi-domain few-shot classification (ICCV)
A multi-mode modulator for multi-domain few-shot classification (ICCV)
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"
Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel
This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"
An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss
Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.
BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).
source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training
Code release for "Cycle Self-Training for Domain Adaptation" (NeurIPS 2021)
CST Code release for "Cycle Self-Training for Domain Adaptation" (NeurIPS 2021) Prerequisites torch=1.7.0 torchvision qpsolvers numpy prettytable tqd
ip2domain - get ip to domain, Know the domian corresponding to the local network connection IP
What is Sometimes, we need to know what connections our local machine has, and what are their IP, domain name, program and parameters? get ip to domai
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)
This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)
V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative
Implements the training, testing and editing tools for "Pluralistic Image Completion"
Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "
Codebase for Time-series Generative Adversarial Networks (TimeGAN)
Codebase for Time-series Generative Adversarial Networks (TimeGAN)
Pytorch implementation of the paper Time-series Generative Adversarial Networks
TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett
Simulations for Turring patterns on an apically expanding domain. T
Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".
HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks
ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".
meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting
3D-aware GANs based on NeRF (arXiv).
CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation
This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)
Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation
HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks
Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20
Cross-Domain Recommendation via Preference Propagation GraphNet.
PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021
crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).
Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.
ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.
SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R
Python code to generate art with Generative Adversarial Network
GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)
EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa
=|= the MsgRoom bot for Windows 96
=|= bot A MsgRoom bot in Python 3 for Windows96.net. The bot joins as =|=, if parameter name_lasts is not true and default_name is =|=. The full
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)
S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question
MONAI Deploy App SDK offers a framework and associated tools to design, develop and verify AI-driven applications in the healthcare imaging domain.
MONAI Deploy App SDK offers a framework and associated tools to design, develop and verify AI-driven applications in the healthcare imaging domain.
Unsupervised Image Generation with Infinite Generative Adversarial Networks
Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question
A style-based Quantum Generative Adversarial Network
Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"
StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.
Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f
source code of Adversarial Feedback Loop Paper
Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)
LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"
This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.
TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.
Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021
Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR
This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.
Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning
End-to-end beat and downbeat tracking in the time domain.
WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022
DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs
PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"
GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If
Bald-to-Hairy Translation Using CycleGAN
GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax
[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou
Transfer-Learn is an open-source and well-documented library for Transfer Learning.
Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.
Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]
GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."
Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".
Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se
simple generative adversarial network (GAN) using PyTorch
Generative Adversarial Networks (GANs) in PyTorch Running Run the sample code by typing: ./gan_pytorch.py ...and you'll train two nets to battle it o
C++ Implementation of PyTorch Tutorials for Everyone
C++ Implementation of PyTorch Tutorials for Everyone OS (Compiler)\LibTorch 1.9.0 macOS (clang 10.0, 11.0, 12.0) Linux (gcc 8, 9, 10, 11) Windows (msv
Semi-supervised Domain Adaptation via Minimax Entropy
Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle
Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)
Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics
Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag
Image-to-Image Translation in PyTorch
CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e
Code for the paper "Adversarial Generator-Encoder Networks"
This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.
AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"
DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"
DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".
pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format
RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP
TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)
A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)
Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository
This is a simple python script to collect sub-domains from hackertarget API
Domain-Scraper 🌐 This is a simple python script to collect sub-domains from hackertarget API Note : This is tool is limited to 20 Queries / day with
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)
DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa
Use Fofa、shodan、zoomeye、360quake to collect information(e.g:domain,IP,CMS,OS)同时调用Fofa、shodan、zoomeye、360quake四个网络空间测绘API完成红队信息收集
Cyberspace Map API English/中文 Development fofaAPI Completed zoomeyeAPI shodanAPI regular 360 quakeAPI Completed Difficulty APIs uses different inputs
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)
Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain
Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)
Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag