620 Repositories
Python unsupervised-domain-adaptation Libraries
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"
The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami · Rayhane Mama · Ragavan Thurairatn
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns
Data stream analytics: Implement online learning methods to address concept drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" accepted in IEEE GlobeCom 2021.
PWPAE-Concept-Drift-Detection-and-Adaptation This is the code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior
GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.
xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa
Comprehensive-E2E-TTS - PyTorch Implementation
A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate E2E-TTS
This repo provides the source code for "Cross-Domain Adaptive Teacher for Object Detection".
Cross-Domain Adaptive Teacher for Object Detection This is the PyTorch implementation of our paper: Cross-Domain Adaptive Teacher for Object Detection
FreeSOLO for unsupervised instance segmentation, CVPR 2022
FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:
RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa
TigerLily: Finding drug interactions in silico with the Graph.
Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de
Language Models Can See: Plugging Visual Controls in Text Generation
Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin
A ssl analyzer which could analyzer target domain's certificate.
ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)
Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)
CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.
Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"
(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W
Get started with Machine Learning with Python - An introduction with Python programming examples
Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog
⚓ Eurybia monitor model drift over time and securize model deployment with data validation
View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".
Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation
CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.
An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection
LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper
UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).
MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling
CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce
Rapidly enumerate subdomains and domains using rapiddns.io.
Description Simple python module (unofficial) allowing you to access data from rapiddns.io. You can also use it as a module. As mentioned on the rapid
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)
Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation
Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"
On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain
SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain
TargetAllDomainObjects A python wrapper to run a command on against all users/co
EmailAll - a powerful Email Collect tool
EmailAll A powerful Email Collect tool 0x1 介绍 😲 EmailAll is a powerful Email Co
Python DNS Lookup: The Domain Name System (DNS) is basically the phonebook of the Internet
-Python-DNS-Lookup- ✨ 🌟 Python DNS Lookup ✨ 🌟 The Domain Name System (DNS) is
Large-Scale Unsupervised Object Discovery
Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based
A Broad Study on the Transferability of Visual Representations with Contrastive Learning
A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on
CATE: Computation-aware Neural Architecture Encoding with Transformers
CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.
py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne
CLASSIX is a fast and explainable clustering algorithm based on sorting
CLASSIX Fast and explainable clustering based on sorting CLASSIX is a fast and explainable clustering algorithm based on sorting. Here are a few highl
Code for ML, domain generation, graph generation of ABC dataset
This is the repository for codes for ML, domain generation, graph generation of Asymmetric Buckling Columns (ABC) dataset in the paper "Learning Mechanically Driven Emergent Behavior with Message Passing Neural Networks".
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain
Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom
Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies
py-self-organizing-map Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies. A SOM is a simple unsuperv
Domain abuse scanner covering domainsquatting and phishing keywords.
🦷 monodon 🐋 Domain abuse scanner covering domainsquatting and phishing keywords. Setup Monodon is a Python 3.7+ programm. To setup on a Linux machin
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics
Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction
A python script to extract information from a Microsoft Remote Desktop Web Access (RDWA) application
This python script allow to extract various information from a Microsoft Remote Desktop Web Access (RDWA) application, such as the FQDN of the remote server, the internal AD domain name (from the FQDN), and the remote Windows Server version
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift
This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).
Real-time domain adaptation for semantic segmentation
Advanced-Machine-Learning This repository contains the code for the project Real
The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
bct_file_generator_for_EasyGSH The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
Lipschitz-constrained Unsupervised Skill Discovery
Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples
SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses
Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss
FramIp - it a framework for work at IP and domain
FramIp FramIp - it a framework for work with IP and domain Installation (termux) $ pkg install git && pkg install python && git clone https://github.c
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx
DROPO: Sim-to-Real Transfer with Offline Domain Randomization
DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models
Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi
A module for CME that spiders hashes across the domain with a given hash.
hash_spider A module for CME that spiders hashes across the domain with a given hash. Installation Simply copy hash_spider.py to your CME module folde
DomainMonitor is a web project that has a RESTful API to get a domain's subdomains and whois data.
DomainMonitor is a web project that has a RESTful API to get a domain's subdomains and whois data.
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning
Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De
Cycle Self-Training for Domain Adaptation (NeurIPS 2021)
CST Code release for "Cycle Self-Training for Domain Adaptation" (NeurIPS 2021) Prerequisites torch=1.7.0 torchvision qpsolvers numpy prettytable tqd
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions
STEM: An approach to Multi-source Domain Adaptation with Guarantees
STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s
A library for benchmarking, developing and deploying deep learning anomaly detection algorithms
A library for benchmarking, developing and deploying deep learning anomaly detection algorithms Key Features • Getting Started • Docs • License Introd
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers
Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency
[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation
SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure
Magicspoofing - A python3 script for search possible misconfiguration in a DNS related to security protections of email service from the domain name
A python3 script for search possible misconfiguration in a DNS related to security protections of email service from the domain name. This project is for educational use, we are not responsible for its misuse.
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark
Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods
Separation of Mainlobes and Sidelobes in the Ultrasound Image Based on the Spatial Covariance (MIST) and Aperture-Domain Spectrum of Received Signals
Separation of Mainlobes and Sidelobes in the Ultrasound Image Based on the Spatial Covariance (MIST) and Aperture-Domain Spectrum of Received Signals
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int
a list of disposable and temporary email address domains
List of disposable email domains This repo contains a list of disposable and temporary email address domains often used to register dummy users in ord
LibMTL: A PyTorch Library for Multi-Task Learning
LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP
MSDorkDump is a Google Dork File Finder that queries a specified domain name and variety of file extensions
MSDorkDump is a Google Dork File Finder that queries a specified domain name and variety of file extensions (pdf, doc, docx, etc), and downloads them.
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js
Unsupervised text tokenizer focused on computational efficiency
YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021
Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”
HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The
Labels4Free: Unsupervised Segmentation using StyleGAN
Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"
LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.
Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models
tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data
1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep
Algorithms for outlier, adversarial and drift detection
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin
Template repo for a GCP-hosted REST API with automatic API versioning and custom domain mapping
Python + Poetry REST API with FastAPI, hosted on GCP This template will get you ready to deploy a FastAPI app in Google Cloud with automatic API versi
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)
U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo
Anomaly detection related books, papers, videos, and toolboxes
Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".
Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021
Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p
Robustness via Cross-Domain Ensembles
Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)
Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y
Whois-Python - Get Whois Domain with Python GUI
Whois-Python-GUI Get Whois Domain with Python - GUI :) WARNING Dont Copy ! - W
Heroku Cloudflare App Domain
Heroku Cloudflare App Domain Creating branded herokuapp.com-like domains using Cloudflare, based on the app name (eg my-app-prod.example.com). Feature