2507 Repositories
Python Creating-Multi-Task-Models-With-Keras Libraries
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21
Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f
Quick program made to generate alpha and delta tables for Hidden Markov Models
HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i
Pipeline for training LSA models using Scikit-Learn.
Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j
Creating Templates and components so those can be reusable some time and makes workflow a lot easier!
TEMPLATES AND COMPONENTS IN ANY LANG! This is an Open Repository For Students to Contribute code in Hackoctoberfest in different Languages and Tech me
you can add any codes in any language by creating its respective folder (if already not available).
HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo
GPT-3: Language Models are Few-Shot Learners
GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.
English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)
This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i
Optimus: the first large-scale pre-trained VAE language model
Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.
BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"
Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"
Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations
VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition
Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode
Toolkit for developing and maintaining ML models
modelkit Python framework for production ML systems. modelkit is a minimalist yet powerful MLOps library for Python, built for people who want to depl
Creating predictive checklists from data using integer programming.
Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more
CoRe: Contrastive Recurrent State-Space Models
CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"
Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui
Fuck - Multi Brute Force 🚶♂
f-mbf Fuck - Multi Brute Force 🚶♂ Install Script $ pkg update && pkg upgrade $ pkg install python2 $ pkg install git $ pip2 install requests $ pip2
Multi-Process / Censorship Detection
Multi-Process / Censorship Detection
An example of semantic segmentation using tensorflow in eager execution.
Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016
Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo
Convenient script for trading with python.
Convenient script for trading with python.
DenseNet Implementation in Keras with ImageNet Pretrained Models
DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted
MAME is a multi-purpose emulation framework.
MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.
Multi-user server for Jupyter notebooks
Technical Overview | Installation | Configuration | Docker | Contributing | License | Help and Resources Please note that this repository is participa
Code and pre-trained models for "ReasonBert: Pre-trained to Reason with Distant Supervision", EMNLP'2021
ReasonBERT Code and pre-trained models for ReasonBert: Pre-trained to Reason with Distant Supervision, EMNLP'2021 Pretrained Models The pretrained mod
Implementation of the paper 'Sentence Bottleneck Autoencoders from Transformer Language Models'
Introduction This repository contains the code for the paper Sentence Bottleneck Autoencoders from Transformer Language Models by Ivan Montero, Nikola
Diagnostic tests for linguistic capacities in language models
LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist
Code for Editing Factual Knowledge in Language Models
KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases
LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"
BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)
Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021
efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".
Multi-Task Deep Neural Networks for Natural Language Understanding
New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.
The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo
Zero-shot Learning by Generating Task-specific Adapters
Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models
LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"
This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.
T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta
The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.
Example code of [Tianchi AAAI2022 Security AI Challenger Program Phase 8]
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"
This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios
Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.
Label Studio is a multi-type data labeling and annotation tool with standardized output format
Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types
Semi-automated vocabulary generation from semantic vector models
vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso
Multi-path load balancing is a method used by most of the real-time network to split the packets into different paths rather than transferring it through a single path
Multipath-Load-Balancing Method of managing incoming traffic by distributing and sharing load fairly among multiple routes from source to destination
A python library for creating selfbots/automating your Nertivia account.
nertivia-selfbot (WIP) A python library for creating selfbots/automating your Nertivia account. how to use Download the nertivia_selfbot folder from t
A simple image-level annotation tool supporting multi-channel images for napari.
napari-labelimg4classification A simple image-level annotation tool supporting multi-channel images for napari. This napari plugin was generated with
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018
UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation
Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models
Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo
Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)
Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks
DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).
Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021
Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting
QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in
Code for "On Memorization in Probabilistic Deep Generative Models"
On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in
Scalable Multi-Agent Reinforcement Learning
Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement
Deep Latent Force Models
Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️
Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks
ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec
Auditing Black-Box Prediction Models for Data Minimization Compliance
Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?
Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".
A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models
LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.
MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci
Evolutionary Scale Modeling (esm): Pretrained language models for proteins
Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"
Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data
A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol
Official implementation of "Robust channel-wise illumination estimation"
This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).
Creating of virtual elements of the graphical interface using opencv and mediapipe.
Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b
A paper list of pre-trained language models (PLMs).
Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie
Behavioral Testing of Clinical NLP Models
Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter
Implementation of Artificial Neural Network Algorithm
Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor
OpenL3: Open-source deep audio and image embeddings
OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound
Datasets, Transforms and Models specific to Computer Vision
vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on
A multi-platform HTTP(S) Reverse Shell Server and Client in Python 3
Phantom - A multi-platform HTTP(S) Reverse Shell Server and Client Phantom is a multi-platform HTTP(S) Reverse Shell server and client in Python 3. Bi
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.
TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task
multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par
Small wrapper around 3dmol.js and html2canvas for creating self-contained HTML files that display a 3D molecular representation.
Description Small wrapper around 3dmol.js and html2canvas for creating self-contained HTML files that display a 3D molecular representation. Double cl
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).
WiFi-based Multi-task Sensing
WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"
This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur
The first GANs-based omics-to-omics translation framework
OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning
Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S
Cross-Task Consistency Learning Framework for Multi-Task Learning
Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)
ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)
this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN
Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif