7921 Repositories
Python Deep-Learning-Models-for-Network-Annomaly-Detection Libraries
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.
Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y
DLFlow is a deep learning framework.
DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)
HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations
Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation
Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection
QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O
Quantum Machine Learning
The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for experiments, and there is also QGAN (Quantum Generative Adversarial Network) algorithm.
Newt - a Gaussian process library in JAX.
Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].
Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
POT : Python Optimal Transport
This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.
Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking
Russian GPT3 models.
Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Large) trained with 1024 sequence length.
Using deep actor-critic model to learn best strategies in pair trading
Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov
Deep Reinforcement Learning based Trading Agent for Bitcoin
Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta
Reinforcement Learning for finance
Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina
Reinforcement Learning for Automated Trading
Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).
This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling
bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies
Learning to trade under the reinforcement learning framework
Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework
Algorithmic Trading using RNN
Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c
Algorithmic trading with deep learning experiments
Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.
Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading
A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.
Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc
Predict stock movement with Machine Learning and Deep Learning algorithms
Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th
Reinforcement Learning for Portfolio Management
qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:
DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea
Use deep learning, genetic programming and other methods to predict stock and market movements
StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both
High frequency AI based algorithmic trading module.
Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current
Algorithmic trading using machine learning.
Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network
Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Using python and scikit-learn to make stock predictions
MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]
Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by
Trading environnement for RL agents, backtesting and training.
TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L
Scalable, event-driven, deep-learning-friendly backtesting library
...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.
Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.
TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th
Processing and interpolating spatial data with a twist of machine learning
Documentation | Documentation (dev version) | Contact | Part of the Fatiando a Terra project About Verde is a Python library for processing spatial da
peartree: A library for converting transit data into a directed graph for sketch network analysis.
peartree 🍐 🌳 peartree is a library for converting GTFS feed schedules into a representative directed network graph. The tool uses Partridge to conve
Tools for the extraction of OpenStreetMap street network data
OSMnet Tools for the extraction of OpenStreetMap (OSM) street network data. Intended to be used in tandem with Pandana and UrbanAccess libraries to ex
Platform for building statistical models of cities and regions
UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:
Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.
OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street
Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.
Automatic neural network visualizations generated in your browser!
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"
Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"
Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant
Demo code for paper "Learning optical flow from still images", CVPR 2021.
Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
100 Days of Machine and Deep Learning Code
💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search
This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge
《Dual-Resolution Correspondence Network》(NeurIPS 2020)
Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne
Learning to Estimate Hidden Motions with Global Motion Aggregation
Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate
Model-based reinforcement learning in TensorFlow
Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error
Joint deep network for feature line detection and description
SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea
Layout Parser is a deep learning based tool for document image layout analysis tasks.
A Python Library for Document Layout Understanding
Oppia is an online learning tool that enables anyone to easily create and share interactive activities
Oppia is an online learning tool that enables anyone to easily create and share interactive activities (called 'explorations'). These activities simulate a one-on-one conversation with a tutor, making it possible for students to learn by doing while getting feedback.
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo
Set of models for classifcation of 3D volumes
Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet
Code for pre-training CharacterBERT models (as well as BERT models).
Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs
New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)
Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models
wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the
Hands-on machine learning workshop
emb-ntua-workshop This workshop discusses introductory concepts of machine learning and data mining following a hands-on approach using popular tools
Polyglot Machine Learning example for scraping similar news articles.
Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper
TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I
This repo is customed for VisDrone.
Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble
Dynamic Slimmable Network (CVPR 2021, Oral)
Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning
MARL Tricks Our codes for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implemented and standardiz
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465
PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡
《Deep Single Portrait Image Relighting》(ICCV 2019)
Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".
Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"
Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting
InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"
How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉
Machine Learning Conference & Summer School Notes. 🦄📝🎉
Semi-supervised Learning for Sentiment Analysis
Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020
Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"
Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)
DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"
Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)
GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo
《Improving Unsupervised Image Clustering With Robust Learning》(2020)
Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape
Top2Vec is an algorithm for topic modeling and semantic search.
Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.