6165 Repositories
Python Train-Semantic-Segmentation-Net-with-Pytorch-In-50-Lines-Of-Code Libraries
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"
CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali
Tool to compare smart contracts source code
smartdiffer Tool to compare smart contracts source code. Heavily relies on API of Etherscan and Diffchecker. Installation pip install smartdiffer API
Semantic Segmentation with Pytorch-Lightning
This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"
EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)
🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"
SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P
A custom prime algorithm, implementation, and performance code & review
Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.
Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."
Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs
Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)
PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive
The official repository for our paper "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". We significantly improve the systematic generalization of transformer models on a variety of datasets using simple tricks and careful considerations.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Codes to pre-train Japanese T5 models
t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。
YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
MIMO-UNet - Official Pytorch Implementation
MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization
[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.
Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification
Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t
Implementation for paper: Self-Regulation for Semantic Segmentation
Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".
Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col
Code for our ALiBi method for transformer language models.
Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms
CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh
Implementation of Fast Transformer in Pytorch
Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install
Source Code For Template-Based Named Entity Recognition Using BART
Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)
Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that allows for easy extension and combination of NIF-related components, as well as readily available paper implementations and dataset loaders.
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.
This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)
This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.
PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)
MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch
disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"
WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU
Intent parsing and slot filling in PyTorch with seq2seq + attention
PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)
Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen
Molecular AutoEncoder in PyTorch
MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"
Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects
Implementations of polygamma, lgamma, and beta functions for PyTorch
lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"
Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet
A3C LSTM Atari with Pytorch plus A3G design
NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C
Transfer Learning Shootout for PyTorch's model zoo (torchvision)
pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM
Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling
VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)
Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So
Visual Question Answering in Pytorch
Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa
Principled Detection of Out-of-Distribution Examples in Neural Networks
ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.
Accelerate Neural Net Training by Progressively Freezing Layers
FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun
ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"
forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7
PyTorch Implement of Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst
A PyTorch implementation of the Transformer model in "Attention is All You Need".
Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.
neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic
Sequence-to-Sequence learning using PyTorch
Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train
A pytorch implementation of Pytorch-Sketch-RNN
Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.
DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802
PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"
Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings
Pytorch implementation of Distributed Proximal Policy Optimization
Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https
A memory-efficient implementation of DenseNets
efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses
Temporal Segment Networks (TSN) in PyTorch
TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017
Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req
A PyTorch implementation of a Factorization Machine module in cython.
fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet
Oriented Response Networks, in CVPR 2017
Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)
pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv
Collection of generative models in Pytorch version.
pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17
2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng
PyTorch implementation of Tacotron speech synthesis model.
tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality
PyTorch implementation of PSPNet segmentation network
pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different
Automatically detect obfuscated code and other state machines
Scripts to automatically detect obfuscated code and state machines in binaries.
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''
The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''
Implementation of Fast Transformer in Pytorch
Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install
An AutoML Library made with Optuna and PyTorch Lightning
An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.
Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computation, and hence adding custom metric is easy as adopting datasets.Metric.
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample
Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.
MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo
PAIRED in PyTorch 🔥
PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce
Monitor and log Network and Disks statistics in MegaBytes per second.
iometrics Monitor and log Network and Disks statistics in MegaBytes per second. Install pip install iometrics Usage Pytorch-lightning integration from
Simple implementation of Mobile-Former on Pytorch
Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different
SQLModel is a library for interacting with SQL databases from Python code, with Python objects.
SQLModel is a library for interacting with SQL databases from Python code, with Python objects. It is designed to be intuitive, easy to use, highly compatible, and robust.
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).
Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo
This is the code repository for the USENIX Security 2021 paper, "Weaponizing Middleboxes for TCP Reflected Amplification".
weaponizing-censors Censors pose a threat to the entire Internet. In this work, we show that censoring middleboxes and firewalls can be weaponized by
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.
Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)
Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A
Deep learning models for change detection of remote sensing images
Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"
A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in