4290 Repositories
Python ViT-PyTorch-implementation Libraries
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks
PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the
Learning Saliency Propagation for Semi-supervised Instance Segmentation
Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018
Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)
SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose
Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.
Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"
Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper
Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"
MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)
Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘
Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear
PyTorch implementation for Graph Contrastive Learning with Augmentations
Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*
SimulLR - PyTorch Implementation of SimulLR
PyTorch Implementation of SimulLR There is an interesting work[1] about simultan
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.
opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing
Python implementation of Aho-Corasick algorithm for string searching
Python implementation of Aho-Corasick algorithm for string searching
Advantage Actor Critic (A2C): jax + flax implementation
Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.
Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
An efficient PyTorch implementation of the evaluation metrics in recommender systems.
recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).
GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."
Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and
ncnn is a high-performance neural network inference framework optimized for the mobile platform
ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".
No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N
PyTorch-based framework for Deep Hedging
PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21
CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021
SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
Bianace Prediction Pytorch Model
Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t
A Python reference implementation of the CF data model
cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm
A Gura parser implementation for Python
Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst
Implementation of an attack on a tropical algebra discrete logarithm based protocol
Implementation of an attack on a tropical algebra discrete logarithm based protocol This code implements the attack detailed in the paper: On the trop
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,
O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"
SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L
Sparse-dense operators implementation for Paddle
Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch
CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"
Discord Rich Presence implementation for Plex.
Perplex Perplex is a Discord Rich Presence implementation for Plex. Features Modern and beautiful Rich Presence for both movies and TV shows The Movie
Catbird is an open source paraphrase generation toolkit based on PyTorch.
Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.
SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how
🇰🇷 Text to Image in Korean
KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo
Pytorch implementation of Masked Auto-Encoder
Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.
SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)
Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez
Pytorch Implementation for (STANet+ and STANet)
Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"
SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"
SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.
CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning
Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"
Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning
MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut
PyTorch implementation of SwAV (Swapping Assignments between Views)
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.
Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'
Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".
PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)
RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme
PyTorch code for training MM-DistillNet for multimodal knowledge distillation
There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation
The implementation of Parameter Differentiation based Multilingual Neural Machin
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"
Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model
Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"
[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas
Unofficial PyTorch implementation of Guided Dropout
Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm
Scene-Text-Detection-and-Recognition (Pytorch)
Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t
TensorFlow implementation of "Attention is all you need (Transformer)"
[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).
Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time
English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.
flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme
PyTorch Implementation for Deep Metric Learning Pipelines
Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email protected]), Biagio Brattoli ([email protected]) When using thi
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.
The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan
Attention for PyTorch with Linear Memory Footprint
Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training models at scale. Hub is used by Google, Waymo, Red Cross, Oxford University, and Omdena.
Implementation for Shape from Polarization for Complex Scenes in the Wild
sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.
ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model
Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine
*ObjDetApp* deploys a pytorch model for object detection
*ObjDetApp* deploys a pytorch model for object detection
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.
pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t
Implementation of Forwards Kinematics, Inverse Kinematics, Point to Point Movement and Synchronous movement for Kuka KR 120 R2700-2.
I made this project for my university course in robotics. I rarely found any information regarding the implementation of mathematics in code. So I decided to make this repo in order to help others :) I got these methods checked by my tutor but feel free to connect if something needs to be changed.
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"
memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic
Deploy recommendation engines with Edge Computing
RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese
The object detection pipeline is based on Ultralytics YOLOv5
AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).
HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds
PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n
A Python implementation of CWT/COSE.
Python CWT - A Python implementation of CWT/COSE Python CWT is a CBOR Web Token (CWT) and CBOR Object Signing and Encryption (COSE) implementation com
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose
Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and
Python implementation for generating Tiny URL- and bit.ly-like URLs.
Short URL Generator Python implementation for generating Tiny URL- and bit.ly-like URLs. A bit-shuffling approach is used to avoid generating consecut
Python implementation of Project Fluent
Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax
Python implementation of the Javascript Object Signing and Encryption (JOSE) framework
Python implementation of the Javascript Object Signing and Encryption (JOSE) framework
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)
Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex
A Pytorch loader for MVTecAD dataset.
MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The