44 Repositories
Python autoencoders Libraries
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training [Arxiv] VideoMAE: Masked Autoencoders are Data-Efficient Learne
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders
MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo
ConvMAE: Masked Convolution Meets Masked Autoencoders
ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M
🧬 Non-linear feature reduction using Deep Autoencoders and Breast Cancer classification.
Project summary This repository contains the implementation of my bachelor degree project. The aim of the project is to apply non-linear feature reduc
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.
Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation
VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)
Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng
The dynamics of representation learning in shallow, non-linear autoencoders
The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML
Repository for the AugmentedPCA Python package.
Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"
DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders
Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow
TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar
Adversarial Autoencoders
Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.
mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/
PyTorch Implementation of Vector Quantized Variational AutoEncoders.
Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th
Autoencoders pretraining using clustering
Autoencoders pretraining using clustering
Implementation of the paper 'Sentence Bottleneck Autoencoders from Transformer Language Models'
Introduction This repository contains the code for the paper Sentence Bottleneck Autoencoders from Transformer Language Models by Ivan Montero, Nikola
Neighborhood Reconstructing Autoencoders
Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T
Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners
MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.
MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup
Ladder Variational Autoencoders (LVAE) in PyTorch
Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".
Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai
SegNet-like Autoencoders in TensorFlow
SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a
A combination of autoregressors and autoencoders using XLNet for sentiment analysis
A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition
Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries
VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.
PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders Getting Started Install requirements with Anaconda: conda env c
Laplacian Score-regularized Concrete Autoencoders
Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to
Data Augmentation with Variational Autoencoders
Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun
ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"
transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"
AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax
Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported