465 Repositories
Python bert-fine-tuning Libraries
ACL'22: Structured Pruning Learns Compact and Accurate Models
☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision
HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.
🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"
T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.
Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations
FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)
FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.
CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron
Sapiens is a human antibody language model based on BERT.
Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.
KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d
Using Machine Learning to Create High-Res Fine Art
BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.
Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem
Includes PyTorch - Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.
ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo
Persian Bert For Long-Range Sequences
ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.
Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi
This is a repo of basic Machine Learning!
Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource
Prompt tuning toolkit for GPT-2 and GPT-Neo
mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).
XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT
LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search
Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.
Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks
AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).
MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.
Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor
Code for our SIGIR 2022 accepted paper : P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-based Learning and Pre-finetuning
P3 Ranker Implementation for our SIGIR2022 accepted paper: P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-bas
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.
Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP
Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification
On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap
Codes for "Template-free Prompt Tuning for Few-shot NER".
EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ
SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss
"# SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING" i
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.
OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters frozen. By using OpenDelta, users could easily implement prefix-tuning, adapters, Lora, or any other types of delta tuning with preferred PTMs.
A python package to fine-tune transformer-based models for named entity recognition (NER).
nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation, and natural language understanding (NLU).
Large-scale Knowledge Graph Construction with Prompting
Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation
FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.
Pretrained Japanese BERT models
Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod
A Novel Plug-in Module for Fine-grained Visual Classification
Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.
L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in
Sequence-tagging using deep learning
Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.
Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton
Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant
RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. Unlike other versions of the model we use BERT for text encoder and SWIN transformer for image encoder.
ruCLIP-SB RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and re
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners
DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment [email protected] Use pi
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".
Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On
UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.
shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t
Towards Fine-Grained Reasoning for Fake News Detection
FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar
Accelerating BERT Inference for Sequence Labeling via Early-Exit
Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks
EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2
RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions
BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)
package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML
Provide fine-grained push access to GitHub from a JupyterHub
github-app-user-auth Provide fine-grained push access to GitHub from a JupyterHub. Goals Allow users on a JupyterHub to grant push access to only spec
Original Implementation of Prompt Tuning from Lester, et al, 2021
Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks
Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res
A handy tool for common machine learning models' hyper-parameter tuning.
Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"
Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.
Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th
This repository contains demos I made with the Transformers library by HuggingFace.
Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8
FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego
Source code for paper "Black-Box Tuning for Language-Model-as-a-Service"
Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics
Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service
Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.
Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs
Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep learning frameworks to pursue optimal inference performance.
Mapping a variable-length sentence to a fixed-length vector using BERT model
Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc
Exploration of BERT-based models on twitter sentiment classifications
twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER
End-to-end MLOps pipeline of a BERT model for emotion classification.
image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices
Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In
Datasets, tools, and benchmarks for representation learning of code.
The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided
Open-source implementation of Google Vizier for hyper parameters tuning
Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BERT.
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)
FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation
A Demo server serving Bert through ONNX with GPU written in Rust with 3
Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit
Using BERT+Bi-LSTM+CRF
Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1
Chinese version of GPT2 training code, using BERT tokenizer.
GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.
Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based
Fine tuning keras-ocr python package with custom synthetic dataset from scratch
OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound
Rhyme with AI
Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.
mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v
Two-stage text summarization with BERT and BART
Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter
Using BERT-based models for toxic span detection
SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).
Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai
Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models
KoBERT - Korean BERT pre-trained cased (KoBERT)
KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models
Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow = 1.2rc0
Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio
Automatic library of congress classification, using word embeddings from book titles and synopses.
Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve
Edorado93 - Unraveling a Rockstar! -- Too much? Fine, Unraveling a humble programmer then?
Hi, I'm Sachin Malhotra ( ⛄ 💻 🎃 🍺 ) Let me set the records straight. Roger Federer is the GOAT and I will not hear otherwise! Now that we have that
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh
CCCL: Contrastive Cascade Graph Learning.
CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr