2834 Repositories
Python deep-convolutional Libraries
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...
Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported
DA2Lite is an automated model compression toolkit for PyTorch.
DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari
Management of exclusive GPU access for distributed machine learning workloads
TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting
Stanza: A Python NLP Library for Many Human Languages
Official Stanford NLP Python Library for Many Human Languages
Utilities for preprocessing text for deep learning with Keras
Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process
How to use TensorLayer
How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay
AutoML library for deep learning
Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras
Latex code for making neural networks diagrams
PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l
Keras implementation of AdaBound
AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
AI Toolkit for Healthcare Imaging
Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am
A distributed deep learning framework that supports flexible parallelization strategies.
FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra
A simple, fully convolutional model for real-time instance segmentation.
You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab
DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y
Multiple implementations for abstractive text summurization , using google colab
Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i
XLNet: Generalized Autoregressive Pretraining for Language Understanding
Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.
Lab Materials for MIT 6.S191: Introduction to Deep Learning
This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available
Deep learning for NLP crash course at ABBYY.
Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa
Deep Learning tutorials in jupyter notebooks.
DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi
Tutorials, assignments, and competitions for MIT Deep Learning related courses.
MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning
TensorFlow Tutorials with YouTube Videos
TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks
What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of
Real-time analysis of intracranial neurophysiology recordings.
py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features
CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"
corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.
AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.
Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s
Easy to start. Use deep nerual network to predict the sentiment of movie review.
Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1 score 92.
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.
DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts
[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5
AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap
Generating Videos with Scene Dynamics
Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs
Chainer implementation of recent GAN variants
Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score
RP-GAN: Stable GAN Training with Random Projections
RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna
Create images and texts with the First Order Generative Adversarial Networks
First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.
Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,
A stable algorithm for GAN training
DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co
Deep Convolutional Generative Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Toward Multimodal Image-to-Image Translation
BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our
Official repository for ABC-GAN
ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)
gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.
GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)
tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"
Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.
Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)
GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C
Image super-resolution through deep learning
srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images
Image Completion with Deep Learning in TensorFlow
Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs
Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin
Code and data for paper "Deep Photo Style Transfer"
deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.
CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for
Image-to-image translation with conditional adversarial nets
pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat
Image De-raining Using a Conditional Generative Adversarial Network
Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes
Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full
Text to image synthesis using thought vectors
Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though
A simple interface for editing natural photos with generative neural networks.
Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural
Interactive Image Generation via Generative Adversarial Networks
iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for
A DCGAN to generate anime faces using custom mined dataset
Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites
Learning Chinese Character style with conditional GAN
zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)
FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente
Powerful and efficient Computer Vision Annotation Tool (CVAT)
Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.
Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl
Build Graph Nets in Tensorflow
Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact [email protected] for comments a
Deep metric learning methods implemented in Chainer
Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P
Computations and statistics on manifolds with geometric structures.
Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].
CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"
Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,
Official implementation for "Image Quality Assessment using Contrastive Learning"
Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi
reXmeX is recommender system evaluation metric library.
A general purpose recommender metrics library for fair evaluation.
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
DeepMReye: magnetic resonance-based eye tracking using deep neural networks
DeepMReye: magnetic resonance-based eye tracking using deep neural networks
Human Pose estimation with TensorFlow framework
Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and
Simple Baselines for Human Pose Estimation and Tracking
Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".
Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E
A deep-learning pipeline for segmentation of ambiguous microscopic images.
Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents
DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports
Low-dose Digital Mammography with Deep Learning
Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains
Stochastic gradient descent with model building
Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
Improving Compound Activity Classification via Deep Transfer and Representation Learning
Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C
MRI reconstruction (e.g., QSM) using deep learning methods
deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later
Code-free deep segmentation for computational pathology
NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.
KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as
Point detection through multi-instance deep heatmap regression for sutures in endoscopy
Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu
Predict halo masses from simulations via graph neural networks
HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati
Pansharpening by convolutional neural networks in the full resolution framework
Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for