3934 Repositories
Python deep-generative-model Libraries
Dust model dichotomous performance analysis
Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the
Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE)
[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at
Model parallel transformers in JAX and Haiku
Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms
FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.
Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo
Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine
Unsupervised Language Model Pre-training for French
FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention
Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz
DeLighT: Very Deep and Light-Weight Transformers
DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I
Fully featured implementation of Routing Transformer
Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
Conditional Transformer Language Model for Controllable Generation
CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.
GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t
Awesome Treasure of Transformers Models Collection
💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️
Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.
AWS RoseTTAFold Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch. Overview Proteins are large biomolecules that play
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"
Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ
Code for paper "Learning to Reweight Examples for Robust Deep Learning"
learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》
RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai
Deep learning for Engineers - Physics Informed Deep Learning
SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki
DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each
Deep Learning Theory
Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"
Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E
Memory-Augmented Model Predictive Control
Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo
A program that uses an API and a AI model to get info of sotcks
Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat
In generative deep geometry learning, we often get many obj files remain to be rendered
a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i
Text Classification in Turkish Texts with Bert
You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification
A foreign language learning aid using a neural network to predict probability of translating foreign words
Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is
A Python description of the Kinematic Bicycle Model with an animated example.
Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.03670
Telegram chatbot created with deep learning model (LSTM) and telebot library.
Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version
Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
A toolkit for document-level event extraction, containing some SOTA model implementations
❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021
Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11
A 1.3B text-to-image generation model trained on 14 million image-text pairs
minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)
Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model
Multiwavelets-based operator model
Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.
PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.
Library to enable Bayesian active learning in your research or labeling work.
Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components
GT China coal model
GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T
Baseline powergrid model for NY
Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Sleep staging from ECG, assisted with EEG
Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep
Type4Py: Deep Similarity Learning-Based Type Inference for Python
Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.
keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea
AI4Good project for detecting waste in the environment
Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"
Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter
Generate high quality pictures. GAN. Generative Adversarial Networks
ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The
A toolkit for document-level event extraction, containing some SOTA model implementations
Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le
Component for deep integration LedFx from Home Assistant.
LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio
This is a graphql api build using ariadne python that serves a graphql-endpoint at port 3002 to perform language translation and identification using deep learning in python pytorch.
Language Translation and Identification this machine/deep learning api that will be served as a graphql-api using ariadne, to perform the following ta
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.
The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
Twin-deep neural network for semi-supervised learning of materials properties
Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials
FinRL-Meta: A Universe for Data-Driven Financial Reinforcement Learning. 🔥
FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users
Centroid-UNet is deep neural network model to detect centroids from satellite images.
Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer
📖 Deep Attentional Guided Image Filtering
📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness
Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con
Pydantic model generator for easy conversion of JSON, OpenAPI, JSON Schema, and YAML data sources.
datamodel-code-generator This code generator creates pydantic model from an openapi file and others. Help See documentation for more details. Supporte
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)
PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding
Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc
A simple agent-based model used to teach the basics of OOP in my lectures
Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not
A minimal code for fairseq vq-wav2vec model inference.
vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"
Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"
CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt
A PyTorch implementation of deep-learning-based registration
DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)
Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021
Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat
PyWorld3 is a Python implementation of the World3 model
The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data
Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran
A PyTorch library and evaluation platform for end-to-end compression research
CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c
A library for researching neural networks compression and acceleration methods.
A library for researching neural networks compression and acceleration methods.
Generative Art Synthesizer - a python program that generates python programs that generates generative art
GAS - Generative Art Synthesizer Generative Art Synthesizer - a python program that generates python programs that generates generative art. Examples
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"
Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task
KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.
PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super