4318 Repositories
Python deep-neural-network Libraries
Polaris is a Face recognition attendance system .
Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images
Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Using approximate bayesian posteriors in deep nets for active learning
Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components
Gaussian processes in TensorFlow
Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
pip install antialiased-cnns to improve stability and accuracy
Antialiased CNNs [Project Page] [Paper] [Talk] Making Convolutional Networks Shift-Invariant Again Richard Zhang. In ICML, 2019. Quick & easy start Ru
A simplified framework and utilities for PyTorch
Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API
micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.
Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does
High-level batteries-included neural network training library for Pytorch
Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute
Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l
An implementation of Performer, a linear attention-based transformer, in Pytorch
Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random
PyTorch extensions for fast R&D prototyping and Kaggle farming
Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf
README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)
News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i
Model summary in PyTorch similar to `model.summary()` in Keras
Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases.
Vulkan Kompute The general purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabl
A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
NVIDIA DALI The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provi
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.
Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage
A high performance and generic framework for distributed DNN training
BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith
a distributed deep learning platform
Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray
A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo
Microsoft Machine Learning for Apache Spark
Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
Distributed Deep learning with Keras & Spark
Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc
BigDL: Distributed Deep Learning Framework for Apache Spark
BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
An easier way to build neural search on the cloud
An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"
Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms
Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction
DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme
Optimising chemical reactions using machine learning
Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.
GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"
Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020
Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)
spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021
CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept
Official code for the ICLR 2021 paper Neural ODE Processes
Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)
QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel
We have implemented shaDow-GNN as a general and powerful pipeline for graph representation learning. For more details, please find our paper titled Deep Graph Neural Networks with Shallow Subgraph Samplers, available on arXiv (https//arxiv.org/abs/2012.01380).
Deep GNN, Shallow Sampling Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, R
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.
FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.
SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch
One Metrics Library to Rule Them All!
onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition
CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En
Text recognition (optical character recognition) with deep learning methods.
What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle
Generate text images for training deep learning ocr model
New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).
OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.
awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約
Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L
OCR engine for all the languages
Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout
A machine learning software for extracting information from scholarly documents
GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means
a Deep Learning Framework for Text
DeLFT DeLFT (Deep Learning Framework for Text) is a Keras and TensorFlow framework for text processing, focusing on sequence labelling (e.g. named ent
Pure Javascript OCR for more than 100 Languages 📖🎉🖥
Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"
Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR
Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.
News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L
Textboxes : Image Text Detection Model : python package (tensorflow)
shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。
TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector
CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |
Tool which allow you to detect and translate text.
Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)
EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t
AdvancedEAST is an algorithm used for Scene image text detect, which is primarily based on EAST, and the significant improvement was also made, which make long text predictions more accurate.https://github.com/huoyijie/raspberrypi-car
AdvancedEAST AdvancedEAST is an algorithm used for Scene image text detect, which is primarily based on EAST:An Efficient and Accurate Scene Text Dete
A tensorflow implementation of EAST text detector
EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)
Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...
keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.
FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of
An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network
FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.
SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:
PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition
STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net
Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text Recognition"
SEE: Towards Semi-Supervised End-to-End Scene Text Recognition Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text
A novel region proposal network for more general object detection ( including scene text detection ).
DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv
This is a c++ project deploying a deep scene text reading pipeline with tensorflow. It reads text from natural scene images. It uses frozen tensorflow graphs. The detector detect scene text locations. The recognizer reads word from each detected bounding box.
DeepSceneTextReader This is a c++ project deploying a deep scene text reading pipeline. It reads text from natural scene images. Prerequsites The proj
This project modify tensorflow object detection api code to predict oriented bounding boxes. It can be used for scene text detection.
This is an oriented object detector based on tensorflow object detection API. Most of the code is not changed except for those related to the need of
caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection Abstract This is a caffe re-implementation of R2CNN: Rotational Region CNN fo
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"
Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.
Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor
Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We