1204 Repositories
Python graph-generation Libraries
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer
Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal
Group-Buying Recommendation for Social E-Commerce
Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (
Knowledge-aware Coupled Graph Neural Network for Social Recommendation
KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.
Graph Neural Network based Social Recommendation Model. SIGIR2019.
Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks
SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".
This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems
DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021
Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &
Price-aware Recommendation with Graph Convolutional Networks,
PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr
Self-supervised Graph Learning for Recommendation
SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing
An index of recommendation algorithms that are based on Graph Neural Networks.
An index of recommendation algorithms that are based on Graph Neural Networks.
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation
Styled Handwritten Text Generation with Transformers (ICCV 21)
⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We
Residual2Vec: Debiasing graph embedding using random graphs
Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R
This folder contains the implementation of the multi-relational attribute propagation algorithm.
MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)
Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”
ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.
Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape
Weakly-supervised Text Classification Based on Keyword Graph
Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)
Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo
Repository for Research Paper: Serverless Thumbnail Generation
Serverless deployment on IBM Cloud Code Engine that uses the Lithops Framework to process images in parallel
novel deep learning research works with PaddlePaddle
Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa
Creating an LSTM model to generate music
Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv
Hacking github graph with a easy python script
Hacking-Github-Graph Hacking github graph with a easy python script Requirements git latest version installed. A text editor (eg: vs code, sublime tex
Collection of code auto-generation utility scripts for the Horizon `Boot` system module
boot-scripts This is a collection of code auto-generation utility scripts for the Horizon Boot system module, intended for use in Atmosphère. Usage Us
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation
Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein
A D3.js plugin that produces flame graphs from hierarchical data.
d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.
A practical and feature-rich paraphrasing framework to augment human intents in text form to build robust NLU models for conversational engines. Created by Prithiviraj Damodaran. Open to pull requests and other forms of collaboration.
Parrot Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more t
Unsupervised Image Generation with Infinite Generative Adversarial Networks
Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".
Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M
SoGCN: Second-Order Graph Convolutional Networks
SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py
novel deep learning research works with PaddlePaddle
Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa
Implementation of paper "Graph Condensation for Graph Neural Networks"
GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)
IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset
Benchmark datasets, data loaders, and evaluators for graph machine learning
Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover
Implementation of Graph Convolutional Networks in TensorFlow
Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n
official implementation for the paper "Simplifying Graph Convolutional Networks"
Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After
PyTorch Implement for Path Attention Graph Network
SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)
Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)
Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph
IsoGCN code for ICLR2021
IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"
Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con
Repository for benchmarking graph neural networks
Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files
Graph Attention Networks
GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie
PyTorch implementation of residual gated graph ConvNets, ICLR’18
Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"
DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”
A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training CVPR 2020”
Convert Lecture Videos to PDF
Convert Lecture Videos to PDF Description Want to go through lecture videos faster without missing any information? Wish you can read the lecture vide
Markov Chain Composer
Markov Chain Composer Using Markov Chain to represent relationships between words in song lyrics and then generating new lyrics.. ahem interpretive po
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021
SynNet - synthetic tree generation using neural networks
SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s
BLEURT is a metric for Natural Language Generation based on transfer learning.
BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.
GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of
This repository implements variational graph auto encoder by Thomas Kipf.
Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"
This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)
SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"
Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.
Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.
TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat
Code for "Understanding Pooling in Graph Neural Networks"
Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos
Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr
A brand new hub for Scene Graph Generation methods based on MMdetection (2021). The pipeline of from detection, scene graph generation to downstream tasks (e.g., image cpationing) is supported. Pytorch version implementation of HetH (ECCV 2020) and TopicSG (ICCV 2021) is included.
MMSceneGraph Introduction MMSceneneGraph is an open source code hub for scene graph generation as well as supporting downstream tasks based on the sce
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.
3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D
Code for Understanding Pooling in Graph Neural Networks
Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install
This repository contains the files for running the Patchify GUI.
Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"
AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR
This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)
DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search
Permute Me Softly: Learning Soft Permutations for Graph Representations
Permute Me Softly: Learning Soft Permutations for Graph Representations
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).
Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation
Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"
BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation
Algorithmic and AI MIDI Drums Generator Implementation
Algorithmic and AI MIDI Drums Generator Implementation
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features
A geometric deep learning pipeline for predicting protein interface contacts.
A geometric deep learning pipeline for predicting protein interface contacts.
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022
DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth
Code generation and code search for Python and Javascript.
Codeon Code generation and code search for Python and Javascript. Similar to GitHub Copilot with one major difference: Code search is leveraged to mak
A testcase generation tool for Persistent Memory Programs.
PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If
DGCNN - Dynamic Graph CNN for Learning on Point Clouds
DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentation and part segmentation.
Automates cubemap generation for Source Engine games.
AutoCube Automates cubemap generation for Source Engine games during compile-time. Download: see the release page Installation Using with CompilePal A
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"
Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos
Code for the paper "Next Generation Reservoir Computing"
Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written
This is a tool to automate the icons generation from sets of svg files into fonts and atlases.
SVG Icon processing tool for C++
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."
Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".
IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"
Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition