256 Repositories
Python label-embeddings Libraries
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"
FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial
Efficient semidefinite bounds for multi-label discrete graphical models.
Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################
Switch spaces for knowledge graph embeddings
SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use
Exploring dimension-reduced embeddings
sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program
A fast, efficient universal vector embedding utility package.
Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"
DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is
Scheme for training and applying a label propagation framework
Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".
This repository will help you get label for images in Stanford Cars Dataset.
STANFORD CARS DATASET stanford-cars "The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network
hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Finding Label and Model Errors in Perception Data With Learned Observation Assertions
Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P
This is the code used in the paper "Entity Embeddings of Categorical Variables".
This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents
DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks
Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings
Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'
Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy
floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr
PECOS - Prediction for Enormous and Correlated Spaces
PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions
gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".
LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master
The code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs. Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, Feng Wu. NeurIPS 2021.
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl
LAMDA: Label Matching Deep Domain Adaptation
LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep
A PyTorch implementation of unsupervised SimCSE
A PyTorch implementation of unsupervised SimCSE
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"
[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/
Instance-Dependent Partial Label Learning
Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -
🎵 A repository for manually annotating files to create labeled acoustic datasets for machine learning.
🎵 A repository for manually annotating files to create labeled acoustic datasets for machine learning.
Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"
Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)
Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)
Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining
LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a
Extremely simple and fast extreme multi-class and multi-label classifiers.
napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss
Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)
Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.
Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.
Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"
Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations
Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr
BuildingNet: Learning to Label 3D Buildings
BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba
Instance-based label smoothing for improving deep neural networks generalization and calibration
Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc
LIVECell - A large-scale dataset for label-free live cell segmentation
LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural language processing.
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.
A curated (most recent) list of resources for Learning with Noisy Labels
A curated (most recent) list of resources for Learning with Noisy Labels
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
Convolutional 2D Knowledge Graph Embeddings resources
ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"
Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"
Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE
smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi
Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.
Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori
Embeddinghub is a database built for machine learning embeddings.
Embeddinghub is a database built for machine learning embeddings.
This is a project for socks card label validation where the socks card is validated comparing with the correct socks card whose coordinates are stored in the database. When the test socks card is compared with the correct socks card(master socks card) the software checks whether both test and master socks card mathches or not.
Automation_in_socks_label_validation THEME: MACHINE LEARNING This is a project for socks card label validation where the socks card is validated compa
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴
PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw
CLabel is a terminal-based cluster labeling tool that allows you to explore text data interactively and label clusters based on reviewing that data.
CLabel is a terminal-based cluster labeling tool that allows you to explore text data interactively and label clusters based on reviewing that
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"
CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"
Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings
A graphical Semi-automatic annotation tool based on labelImg and Yolov5
💕YOLOV5 semi-automatic annotation tool (Based on labelImg)
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset
KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/
Learning Compatible Embeddings, ICCV 2021
LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu
Large scale embeddings on a single machine.
Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".
Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Versatile Generative Language Model
Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"
Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations
Convolutional 2D Knowledge Graph Embeddings resources
ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.
MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (supports 16 languages) of Universal Sentence Encoder (USE).
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co
DRIFT is a tool for Diachronic Analysis of Scientific Literature.
About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch
Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.
UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:
Label Mask for Multi-label Classification
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由
🤖 A Python library for learning and evaluating knowledge graph embeddings
PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one or two GPUs. Both server and client work on the same/different machine. However, initial support for multiple users is restricted. It shares the same principles with MONAI.
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
Shared code for training sentence embeddings with Flax / JAX
flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label
Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot
中文无监督SimCSE Pytorch实现
A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper
Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar