4433 Repositories
Python neural-style-transfer-pytorch Libraries
PyTorch implementation of MulMON
MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi
Improving Compound Activity Classification via Deep Transfer and Representation Learning
Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images
wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb
Generating Band-Limited Adversarial Surfaces Using Neural Networks
Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)
Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.
KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as
Point detection through multi-instance deep heatmap regression for sutures in endoscopy
Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu
Predict halo masses from simulations via graph neural networks
HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati
Implementation of neural class expression synthesizers
NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi
Pansharpening by convolutional neural networks in the full resolution framework
Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for
Learning a mapping from images to psychological similarity spaces with neural networks.
LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s
Official implementation of Meta-StyleSpeech and StyleSpeech
Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer
This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"
Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP
AOT (Associating Objects with Transformers) in PyTorch
An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch
An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv
FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f
MMFlow is an open source optical flow toolbox based on PyTorch
Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part
Short and long time series classification using convolutional neural networks
time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f
sktime companion package for deep learning based on TensorFlow
NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D
PySurvival is an open source python package for Survival Analysis modeling
PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p
A toolbox to iNNvestigate neural networks' predictions!
iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture
Neural Architecture Search Powered by Swarm Intelligence 🐜
Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more
Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.
EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)
GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler
PyTorch implementation of UNet++ (Nested U-Net).
PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"
Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image
This repository contains the reference implementation for our proposed Convolutional CRFs.
ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).
CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc
Using modified BiSeNet for face parsing in PyTorch
face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De
BiSeNet based on pytorch
BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation
Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor
Understanding Convolution for Semantic Segmentation
TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)
Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s
PyTorch implementation of PSPNet
PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe
PSPNet in Chainer
PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for
Pytorch code for semantic segmentation using ERFNet
ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.
FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th
PyTorch implementation of ENet
PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN
A playable implementation of Fully Convolutional Networks with Keras.
keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git
My implementation of Fully Convolutional Neural Networks in Keras
Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c
Pytorch for Segmentation
Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation
FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)
A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC
DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC
PyTorch Implementations for DeeplabV3 and PSPNet
Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor
Deeplab-resnet-101 in Pytorch with Jaccard loss
Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:
Semantic segmentation models, datasets and losses implemented in PyTorch.
Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.
pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset
TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is
Retina blood vessel segmentation with a convolutional neural network
Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo
Real-Time Semantic Segmentation in Mobile device
Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur
Generic U-Net Tensorflow implementation for image segmentation
Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu
U-Net: Convolutional Networks for Biomedical Image Segmentation
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne
Modification of convolutional neural net "UNET" for image segmentation in Keras framework
ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.
Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”
GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.
PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With
A graph adversarial learning toolbox based on PyTorch and DGL.
GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)
AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed
Trainable PyTorch reproduction of AlphaFold 2
OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina
Anime Face Detector using mmdet and mmpose
Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"
PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio
Boundary-aware Transformers for Skin Lesion Segmentation
Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le
Official Pytorch implementation of RePOSE (ICCV2021)
RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo
Interactive convnet features visualization for Keras
Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis
Pytorch bindings for Fortran
Pytorch bindings for Fortran
Neural network-based build time estimation for additive manufacturing
Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim
This is a clean and robust Pytorch implementation of DQN and Double DQN.
DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".
Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".
On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21
Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.
Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)
Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y
Half Instance Normalization Network for Image Restoration
HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ
AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。
Single machine, multiple cards training; mix-precision training; DALI data loader.
Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields
Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The
Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games.
NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora
A PyTorch Image-Classification With AlexNet And ResNet50.
PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b
Yolov5 + Deep Sort with PyTorch
딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj
Generative Art Using Neural Visual Grammars and Dual Encoders
Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.
Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).
Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".
Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time