152 Repositories
Python parallel-meaning-bank Libraries
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"
JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA
A Pytorch Implementation of ClariNet
ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis
MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.
Code for the paper "Implicit Representations of Meaning in Neural Language Models"
Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.
A parallel framework for population-based multi-agent reinforcement learning.
MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested
Modelling and Implementation of Cable Driven Parallel Manipulator System with Tension Control
Cable Driven Parallel Robots (CDPR) is also known as Cable-Suspended Robots are the emerging and flexible end effector manipulation system. Cable-driven parallel robots (CDPRs) are categorized as a type of parallel manipulators
Corset is a web-based data selection portal that helps you getting relevant data from massive amounts of parallel data.
Corset is a web-based data selection portal that helps you getting relevant data from massive amounts of parallel data. So, if you don't need the whole corpus, but just a suitable subset (indeed, a cor(pus sub)set, this is what Corset will do for you--and the reason of the name of the tool.
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.
Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX
SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs.
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs, supporting both control flow and dataflow execution paradigms as well as de-centralized CPU & GPU scheduling.
Deep functional residue identification
DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.
Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit
A general-purpose multi-agent training framework.
MALib A general-purpose multi-agent training framework. Installation step1: build environment conda create -n malib python==3.7 -y conda activate mali
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.
MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the
Ray provides a simple, universal API for building distributed applications.
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and GPT) or huge classes (millions). It has the same API design as PyTorch.
Read and write rasters in parallel using Rasterio and Dask
dask-rasterio dask-rasterio provides some methods for reading and writing rasters in parallel using Rasterio and Dask arrays. Usage Read a multiband r
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture
monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters
Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing
Python bindings for MPI
MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple
Interactive Parallel Computing in Python
Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)
TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c
Smaller, easier, more powerful, and more reliable than make. An implementation of djb's redo.
redo - a recursive build system Smaller, easier, more powerful, and more reliable than make. This is an implementation of Daniel J. Bernstein's redo b
TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2 (supported including English, Korean, Chinese, German and Easy to adapt for other languages)
🤪 TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2. With Tensorflow 2, we can speed-up training/inference progress, optimizer further by using fake-quantize aware and pruning, make TTS models can be run faster than real-time and be able to deploy on mobile devices or embedded systems.
Model parallel transformers in Jax and Haiku
Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open
A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner
swifter A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner. Blog posts Release 1.0.0 Fir
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py
PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to
An anthology of a variety of tools for the Persian language in Python
An anthology of a variety of tools for the Persian language in Python
Snips Python library to extract meaning from text
Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur
Extensible, parallel implementations of t-SNE
openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al
Parallel t-SNE implementation with Python and Torch wrappers.
Multicore t-SNE This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also wo
Snips Python library to extract meaning from text
Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur
Extensible, parallel implementations of t-SNE
openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al
Parallel t-SNE implementation with Python and Torch wrappers.
Multicore t-SNE This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also wo
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
A Fast, Extensible Progress Bar for Python and CLI
tqdm tqdm derives from the Arabic word taqaddum (تقدّم) which can mean "progress," and is an abbreviation for "I love you so much" in Spanish (te quie
Asynchronous parallel SSH client library.
parallel-ssh Asynchronous parallel SSH client library. Run SSH commands over many - hundreds/hundreds of thousands - number of servers asynchronously
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.
GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun
Python interface to the World Bank Indicators and Climate APIs
wbpy A Python interface to the World Bank Indicators and Climate APIs. Readthedocs Github source World Bank API docs The Indicators API lets you acces
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters
Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing
Snips Python library to extract meaning from text
Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur
A Sklearn-like Framework for Hyperparameter Tuning and AutoML in Deep Learning projects. Finally have the right abstractions and design patterns to properly do AutoML. Let your pipeline steps have hyperparameter spaces. Enable checkpoints to cut duplicate calculations. Go from research to production environment easily.
Neuraxle Pipelines Code Machine Learning Pipelines - The Right Way. Neuraxle is a Machine Learning (ML) library for building machine learning pipeline
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear