182 Repositories
Python parallel-processes Libraries
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code
Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.
Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.
English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.
README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" (SPNLP@ACL2022)
GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa
Return-Parity-MDP - Towards Return Parity in Markov Decision Processes
Towards Return Parity in Markov Decision Processes Code for the AISTATS 2022 pap
MOT-Tracking-by-Detection-Pipeline - For Tracking-by-Detection format MOT (Multi Object Tracking), is it a framework that separates Detection and Tracking processes?
MOT-Tracking-by-Detection-Pipeline Tracking-by-Detection形式のMOT(Multi Object Trac
A framework for GPU based high-performance medical image processing and visualization
FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both multi-core CPUs and GPUs. To achieve this, FAST use modern C++, OpenCL and OpenGL.
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri
This speeds up PyCharm's package index processes and avoids CPU & memory overloading
This speeds up PyCharm's package index processes and avoids CPU & memory overloading
ReCoin - Restoring our environment and businesses in parallel
Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R
OpenAi's gym environment wrapper to vectorize them with Ray
Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
PaRT: Parallel Learning for Robust and Transparent AI
PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository
We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenization which can be used to train an English-Hindi MT System.
EasyRequests is a minimalistic HTTP-Request Library that wraps aiohttp and asyncio in a small package that allows for sequential, parallel or even single requests
EasyRequests EasyRequests is a minimalistic HTTP-Request Library that wraps aiohttp and asyncio in a small package that allows for sequential, paralle
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.
Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages
aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference, with the design goal of unifying the automation (of Monte Carlo simulations), user-friendliness (of the library), accessibility (from multiple programming environments), high-performance (at runtime), and scalability (across many parallel processors).
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th
ParaGen is a PyTorch deep learning framework for parallel sequence generation
ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extraction and generation.
A Python implementation of active inference for Markov Decision Processes
A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constraints to achieve maximum laps in a race with a 2-hour time window.
A Python script that wraps the gitleaks tool to enable scanning of multiple repositories in parallel
mpgitleaks A Python script that wraps the gitleaks tool to enable scanning of multiple repositories in parallel. The motivation behind writing this sc
Tutorial on scikit-learn and IPython for parallel machine learning
Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)
PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:
A library to make concurrent selenium tests that automatically download and setup webdrivers
AutoParaSelenium A library to make parallel selenium tests that automatically download and setup webdrivers Usage Installation pip install autoparasel
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'
Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.
(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.
Used the pyautogui library to automate some processes on the computer
Pyautogui Utilizei a biblioteca pyautogui para automatizar alguns processos no c
Functional interface for concurrent futures, including asynchronous I/O.
Futured provides a consistent interface for concurrent functional programming in Python. It wraps any callable to return a concurrent.futures.Future,
For use with an 8-bit parallel TFT touchscreen using micropython
ILI9341-parallel-TFT-driver-for-micropython For use with an 8-bit parallel TFT touchscreen using micropython. Many thanks to prenticedavid and his MCU
rosny is a lightweight library for building concurrent systems.
rosny is a lightweight library for building concurrent systems. Installation Tested on: Linux Python = 3.6 From pip: pip install rosny From source: p
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python
jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd
Run python scripts and pass data between multiple python and node processes using this npm module
Run python scripts and pass data between multiple python and node processes using this npm module. process-communication has a event based architecture for interacting with python data and errors inside nodejs.
About Python's multithreading and GIL
About Python's multithreading and GIL
Ping IP addresses and domains in parallel to find the accessible and inaccessible ones.
🚀 IPpy Parallel testing of IP addresses and domains in python. Reads IP addresses and domains from a CSV file and gives two lists of accessible and i
Execute shell command lines in parallel on Slurm, S(on) of Grid Engine (SGE), PBS/Torque clusters
qbatch Execute shell command lines in parallel on Slurm, S(on) of Grid Engine (SGE), PBS/Torque clusters qbatch is a tool for executing commands in pa
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.
Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb
Pyeventbus: a publish/subscribe event bus
pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and
NumPy aware dynamic Python compiler using LLVM
Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco
Self-Adaptable Point Processes with Nonparametric Time Decays
NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch
Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel
🍰 ConnectMP - An easy and efficient way to share data between Processes in Python.
ConnectMP - Taking Multi-Process Data Sharing to the moon 🚀 Contribute · Community · Documentation 🎫 Introduction : 🍤 ConnectMP is the easiest and
Jug: A Task-Based Parallelization Framework
Jug: A Task-Based Parallelization Framework Jug allows you to write code that is broken up into tasks and run different tasks on different processors.
A desktop application developed in Python with PyQt5 to predict demand and help monitor and schedule brewing processes for Barnaby's Brewhouse.
brewhouse-management A desktop application developed in Python with PyQt5 to predict demand and help monitor and schedule brewing processes for Barnab
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN
A Python package for faster, safer, and simpler ML processes
Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe
Scan all java processes on your host to check weather it's affected by log4j2 remote code execution
Log4j2 Vulnerability Local Scanner (CVE-2021-45046) Log4j 漏洞本地检测脚本,扫描主机上所有java进程,检测是否引入了有漏洞的log4j-core jar包,是否可能遭到远程代码执行攻击(CVE-2021-45046)。上传扫描报告到指定的服
A parallel branch-and-bound engine for Python.
pybnb A parallel branch-and-bound engine for Python. This software is copyright (c) by Gabriel A. Hackebeil (gabe.hacke
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically
About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien
Model parallel transformers in JAX and Haiku
Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.
GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t
The versatile ocean simulator, in pure Python, powered by JAX.
Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros
A proof-of-concept implementation of a parallel-decodable PNG format
mtpng A parallelized PNG encoder in Rust by Brion Vibber [email protected] Background Compressing PNG files is a relatively slow operation at large imag
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts
DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o
Unsynchronize asyncio by using an ambient event loop, or executing in separate threads or processes.
unsync Unsynchronize asyncio by using an ambient event loop, or executing in separate threads or processes. Quick Overview Functions marked with the @
Python supercharged for the fastai library
Welcome to fastcore Python goodies to make your coding faster, easier, and more maintainable Python is a powerful, dynamic language. Rather than bake
Kubernetes-native workflow automation platform for complex, mission-critical data and ML processes at scale. It has been battle-tested at Lyft, Spotify, Freenome, and others and is truly open-source.
Flyte Flyte is a workflow automation platform for complex, mission-critical data, and ML processes at scale Home Page · Quick Start · Documentation ·
Parallel TTS web demo based on Flask + Vue (Vuetify).
Parallel TTS web demo based on Flask + Vue (Vuetify).
This is a project of data parallel that running on NLP tasks.
This is a project of data parallel that running on NLP tasks.
Massively parallel Monte Carlo diffusion MR simulator written in Python.
Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat
Adaptive: parallel active learning of mathematical functions
adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4
Deep Latent Force Models
Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).
Parallel Latent Tree-Induction for Faster Sequence Encoding
FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor
A simple and efficient tool to parallelize Pandas operations on all available CPUs
Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems
Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro
A synchronous, single-threaded interface for starting processes on Linux
A synchronous, single-threaded interface for starting processes on Linux
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
An Active Automata Learning Library Written in Python
AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto
Python implementation of an automatic parallel parking system in a virtual environment, including path planning, path tracking, and parallel parking
Automatic Parallel Parking: Path Planning, Path Tracking & Control This repository contains a python implementation of an automatic parallel parking s
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.
Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us
Taichi is a parallel programming language for high-performance numerical computations.
Taichi is a parallel programming language for high-performance numerical computations.
Dense Gaussian Processes for Few-Shot Segmentation
DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.
counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.
counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"
Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our
A Python module for parallel optimization of expensive black-box functions
blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e
A hyperparameter optimization framework
Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software
A python tool for synchronizing the messages from different threads, processes, or hosts.
Sync-stream This project is designed for providing the synchoronization of the stdout / stderr among different threads, processes, devices or hosts.
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'
Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.
Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil
A complete end-to-end machine learning portal that covers processes starting from model training to the model predicting results using FastAPI.
Machine Learning Portal Goal Application Workflow Process Design Live Project Goal A complete end-to-end machine learning portal that covers processes
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."
Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training
ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst
Resilient Adaptive Parallel sImulator for griD (rapid)
Rapid is an open-source software library that implements a novel “parallel-in-time” (Parareal) algorithm and semi-analytical solutions for co-simulation of integrated transmission and distribution systems.
Gorrabot is a bot made to automate checks and processes in the development process.
Gorrabot is a Gitlab bot made to automate checks and processes in the Faraday development. Features Check that the CHANGELOG is modified By default, m
A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:
A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training
ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install
Modular Gaussian Processes
Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
LittleBrother is a simple parental control application monitoring specific processes on Linux hosts to monitor and limit the play time of children.
Parental Control Application LittleBrother Overview LittleBrother is a simple parental control application monitoring specific processes (read "games"
Bayesian Meta-Learning Through Variational Gaussian Processes
vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces