374 Repositories
Python robust-statistics Libraries
Prometheus exporter for several chia node statistics
prometheus-chia-exporter Prometheus exporter for several chia node statistics It's assumed that the full node, the harvester and the wallet run on the
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"
Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c
Unsupervised Language Modeling at scale for robust sentiment classification
** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
Domain Generalization with MixStyle, ICLR'21.
MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.
One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)
Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach
Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction
PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan
A complete guide to start and improve in machine learning (ML)
A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021
IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms
AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced
Summary statistics of geospatial raster datasets based on vector geometries.
rasterstats rasterstats is a Python module for summarizing geospatial raster datasets based on vector geometries. It includes functions for zonal stat
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465
PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky
《Improving Unsupervised Image Clustering With Robust Learning》(2020)
Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L
🔩 Like builtins, but boltons. 250+ constructs, recipes, and snippets which extend (and rely on nothing but) the Python standard library. Nothing like Michael Bolton.
Boltons boltons should be builtins. Boltons is a set of over 230 BSD-licensed, pure-Python utilities in the same spirit as — and yet conspicuously mis
Statistical package in Python based on Pandas
Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Gaussian processes in TensorFlow
Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla
A python library for Bayesian time series modeling
PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W
An open source reinforcement learning framework for training, evaluating, and deploying robust trading agents.
TensorTrade: Trade Efficiently with Reinforcement Learning TensorTrade is still in Beta, meaning it should be used very cautiously if used in producti
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.
Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]
Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.
News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments
Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:
PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu
caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection Abstract This is a caffe re-implementation of R2CNN: Rotational Region CNN fo
Implementation of Kalman Filter in Python
Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)
Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"
Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.
TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le
Multiple Pairwise Comparisons (Post Hoc) Tests in Python
scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.
weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.
Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Probabilistic Programming and Statistical Inference in PyTorch
PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla
Open source time series library for Python
PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array
Module for statistical learning, with a particular emphasis on time-dependent modelling
Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Object detection on multiple datasets with an automatically learned unified label space.
Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E
Analytics service that is part of iter8. Robust analytics and control to unleash cloud-native continuous experimentation.
iter8-analytics iter8 enables statistically robust continuous experimentation of microservices in your CI/CD pipelines. For in-depth information about
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来
Flask-Rebar combines flask, marshmallow, and swagger for robust REST services.
Flask-Rebar Flask-Rebar combines flask, marshmallow, and swagger for robust REST services. Features Request and Response Validation - Flask-Rebar reli
🔩 Like builtins, but boltons. 250+ constructs, recipes, and snippets which extend (and rely on nothing but) the Python standard library. Nothing like Michael Bolton.
Boltons boltons should be builtins. Boltons is a set of over 230 BSD-licensed, pure-Python utilities in the same spirit as — and yet conspicuously mis
Visualize and compare datasets, target values and associations, with one line of code.
In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Visualize and compare datasets, target values and associations, with one line of code.
In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
scikit-learn: machine learning in Python
scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started
Flask-Rebar combines flask, marshmallow, and swagger for robust REST services.
Flask-Rebar Flask-Rebar combines flask, marshmallow, and swagger for robust REST services. Features Request and Response Validation - Flask-Rebar reli
curl statistics made simple
httpstat httpstat visualizes curl(1) statistics in a way of beauty and clarity. It is a single file 🌟 Python script that has no dependency 👏 and is
Unadversarial Examples: Designing Objects for Robust Vision
Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U
a robust room presence solution for home automation with nearly no false negatives
Argos Room Presence This project builds a room presence solution on top of Argos. Using just a cheap raspberry pi zero w (plus an attached pi camera,
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf
NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p
A Python API to retrieve and read MLB GameDay data
mlbgame mlbgame is a Python API to retrieve and read MLB GameDay data. mlbgame works with real time data, getting information as games are being playe
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
🔩 Like builtins, but boltons. 250+ constructs, recipes, and snippets which extend (and rely on nothing but) the Python standard library. Nothing like Michael Bolton.
Boltons boltons should be builtins. Boltons is a set of over 230 BSD-licensed, pure-Python utilities in the same spirit as — and yet conspicuously mis
Multi-class confusion matrix library in Python
Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References
🌊 Online machine learning in Python
In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Easy and comprehensive assessment of predictive power, with support for neuroimaging features
Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)
Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap