5516 Repositories
Python self-learning Libraries
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.
Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:
missing-pixel-filler is a python package that, given images that may contain missing data regions (like satellite imagery with swath gaps), returns these images with the regions filled.
Missing Pixel Filler This is the official code repository for the Missing Pixel Filler by SpaceML. missing-pixel-filler is a python package that, give
PyTorch implementation of Constrained Policy Optimization
PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A
MIT-Machine Learning with Python–From Linear Models to Deep Learning
MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t
Teaching end to end workflow of deep learning
Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche
Deep Q-network learning to play flappybird.
AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and
TLDR: Twin Learning for Dimensionality Reduction
TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self-supervised learning losses.
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks
TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021
FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)
FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.
COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'
DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation
MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the
Self-supervised Graph Learning for Recommendation
SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing
An index of recommendation algorithms that are based on Graph Neural Networks.
An index of recommendation algorithms that are based on Graph Neural Networks.
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)
StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model
SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution
ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha
Fast Style Transfer in TensorFlow
Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o
Lale is a Python library for semi-automated data science.
Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-safe fashion.
Transform-Invariant Non-Negative Matrix Factorization
Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn
A collection of neat and practical data science and machine learning projects
Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.
Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face
Code for binary and multiclass model change active learning, with spectral truncation implementation.
Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".
Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)
Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu
a Lightweight library for sequential learning agents, including reinforcement learning
SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).
Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.
ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang
End-to-End Speech Processing Toolkit
ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p
CPC-big and k-means clustering for zero-resource speech processing
The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.
Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.
The code from the Machine Learning Bookcamp book and a free course based on the book
The code from the Machine Learning Bookcamp book and a free course based on the book
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.
SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces
Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition
Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion
State of the Art Neural Networks for Generative Deep Learning
pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"
CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.
Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)
S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve
Educational Repo. Used whilst learning Flask.
flask_python Educational Repo. Used whilst learning Flask. The below instructions will be required whilst establishing as new project. Install Flask (
use machine learning to recognize gesture on raspberrypi
Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入
Deep Learning as a Cloud API Service.
Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w
novel deep learning research works with PaddlePaddle
Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.
Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env
TensorFlow implementation of Adaptive Information Transfer Multi-task (AITM) framework. Code for the paper submitted to KDD21: Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning for Customer Acquisition.
AITM TensorFlow implementation of Adaptive Information Transfer Multi-task (AITM) framework. Code for the paper accepted by KDD21: Modeling the Sequen
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)
Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.
Asymmetric metric learning for knowledge transfer
Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"
Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"
Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning
About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay
Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.
Deep Learning Slide Captcha
滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl
Code and data for learning to search in local branching
Code and data for learning to search in local branching
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.
Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating
NLP, Machine learning
Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f
KUIZ is a web application quiz where you can create/take a quiz for learning and sharing knowledge from various subjects, questions and answers.
KUIZ KUIZ is a web application quiz where you can create/take a quiz for learning and sharing knowledge from various subjects, questions and answers.
Painting app using Python machine learning and vision technology.
AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni
Open source style Deep Dream project
DeepDream ⚠️ If you don't have a gpu with cuda, the style transfer execution time will be much longer Prerequisites Python =3.8.10 How to Install sud
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
Minimalistic Gridworld Environment (MiniGrid)
Minimalistic Gridworld Environment (MiniGrid) There are other gridworld Gym environments out there, but this one is designed to be particularly simple
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It orchestrates the end-to-end deep learning workflow allowing to train networks with easy-to-use robust high-performance libraries such as Pytorch-Lightning and Fastai
Medical image analysis framework merging ANTsPy and deep learning
ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.
SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.
Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo
MONAI Deploy App SDK offers a framework and associated tools to design, develop and verify AI-driven applications in the healthcare imaging domain.
MONAI Deploy App SDK offers a framework and associated tools to design, develop and verify AI-driven applications in the healthcare imaging domain.
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021
object recognition with machine learning on Respberry pi
Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.
SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl
Composing methods for ML training efficiency
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!
A style-based Quantum Generative Adversarial Network
Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb
SoGCN: Second-Order Graph Convolutional Networks
SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".
DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations
Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr
novel deep learning research works with PaddlePaddle
Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.
Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)
IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset
Benchmark datasets, data loaders, and evaluators for graph machine learning
Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover
official implementation for the paper "Simplifying Graph Convolutional Networks"
Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After
IsoGCN code for ICLR2021
IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?
Repository for benchmarking graph neural networks
Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files
Graph Attention Networks
GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"
DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).
Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte