257 Repositories
Python shape-reconstruction Libraries
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici
PyTorch implementation of CloudWalk's recent work DenseBody
densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation
MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'
HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea
ShapeGlot: Learning Language for Shape Differentiation
ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas
Square Root Bundle Adjustment for Large-Scale Reconstruction
RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"
Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.
Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021
Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021
S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join
This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.
NoW Evaluation This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard e
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.
LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"
Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.
Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)
SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in
Neural Factorization of Shape and Reflectance Under An Unknown Illumination
NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"
MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints
Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations
The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces
DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"
StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model
A large-scale dataset of both raw MRI measurements and clinical MRI images
fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonymized knee and brain MRI datasets that can be downloaded from the fastMRI dataset page. Publications associated with the fastMRI project can be found at the end of this README.
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion
ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021
TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction
PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
This is the official code release for the paper Shape and Material Capture at Home
This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashlight or camera with flash.
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.
Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations
Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.
torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction
RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.
CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral
NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images
SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"
PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]
USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f
Poisson Surface Reconstruction for LiDAR Odometry and Mapping
Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction
DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo
2D Time independent Schrodinger equation solver for arbitrary shape of well
Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.
News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:
PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu
Implementation of "Deep Implicit Templates for 3D Shape Representation"
Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:
Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)
Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O
3D medical imaging reconstruction software
InVesalius InVesalius generates 3D medical imaging reconstructions based on a sequence of 2D DICOM files acquired with CT or MRI equipments. InVesaliu
3D Reconstruction Software
Meshroom is a free, open-source 3D Reconstruction Software based on the AliceVision Photogrammetric Computer Vision framework. Learn more details abou
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt
AIST++ API This repo contains starter code for using the AIST++ dataset.
AIST++ API This repo contains starter code for using the AIST++ dataset. To download the dataset or explore details of this dataset, please go to our
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.
Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable