478 Repositories
Python single-gpu Libraries
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS
(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.
PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr
jupyter/ipython experiment containers for GPU and general RAM re-use
ipyexperiments jupyter/ipython experiment containers and utils for profiling and reclaiming GPU and general RAM, and detecting memory leaks. About Thi
Library for faster pinned CPU - GPU transfer in Pytorch
SpeedTorch Faster pinned CPU tensor - GPU Pytorch variabe transfer and GPU tensor - GPU Pytorch variable transfer, in certain cases. Update 9-29-1
A Python module for getting the GPU status from NVIDA GPUs using nvidia-smi programmically in Python
GPUtil GPUtil is a Python module for getting the GPU status from NVIDA GPUs using nvidia-smi. GPUtil locates all GPUs on the computer, determines thei
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases.
Vulkan Kompute The general purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabl
BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python. Built on RAPIDS cuDF.
A lightweight, GPU accelerated, SQL engine built on the RAPIDS.ai ecosystem. Get Started on app.blazingsql.com Getting Started | Documentation | Examp
cuML - RAPIDS Machine Learning Library
cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t
A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
NVIDIA DALI The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provi
Python 3 Bindings for NVML library. Get NVIDIA GPU status inside your program.
py3nvml Documentation also available at readthedocs. Python 3 compatible bindings to the NVIDIA Management Library. Can be used to query the state of
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Resources cuDF Reference Documentation: Python API refe
Python interface to GPU-powered libraries
Package Description scikit-cuda provides Python interfaces to many of the functions in the CUDA device/runtime, CUBLAS, CUFFT, and CUSOLVER libraries
ArrayFire: a general purpose GPU library.
ArrayFire is a general-purpose library that simplifies the process of developing software that targets parallel and massively-parallel architectures i
CUDA integration for Python, plus shiny features
PyCUDA lets you access Nvidia's CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist-so what's so special about P
📊 A simple command-line utility for querying and monitoring GPU status
gpustat Just less than nvidia-smi? NOTE: This works with NVIDIA Graphics Devices only, no AMD support as of now. Contributions are welcome! Self-Promo
A NumPy-compatible array library accelerated by CUDA
CuPy : A NumPy-compatible array library accelerated by CUDA Website | Docs | Install Guide | Tutorial | Examples | API Reference | Forum CuPy is an im
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.
Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
High-performance TensorFlow library for quantitative finance.
TF Quant Finance: TensorFlow based Quant Finance Library Table of contents Introduction Installation TensorFlow training Development roadmap Examples
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。
TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n
TextBoxes++: A Single-Shot Oriented Scene Text Detector
TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR
Single Shot Text Detector with Regional Attention
Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition
STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'
SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)
DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama
Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.
Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
Modin: Speed up your Pandas workflows by changing a single line of code
Scale your pandas workflows by changing one line of code To use Modin, replace the pandas import: # import pandas as pd import modin.pandas as pd Inst
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Built based on the Apache Arrow columnar memory format,
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
cuML - RAPIDS Machine Learning Library
cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.
Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime
A modular single-molecule analysis interface
MOSAIC: A modular single-molecule analysis interface MOSAIC is a single molecule analysis toolbox that automatically decodes multi-state nanopore data
An interactive explorer for single-cell transcriptomics data
an interactive explorer for single-cell transcriptomics data cellxgene (pronounced "cell-by-gene") is an interactive data explorer for single-cell tra
WikidPad is a single user desktop wiki
What is WikidPad? WikidPad is a Wiki-like notebook for storing your thoughts, ideas, todo lists, contacts, or anything else you can think of to write
Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running.
lazyprofiler Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running. Installation Use the packag
Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios
Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios
🍯 16 honeypots in a single pypi package (DNS, HTTP Proxy, HTTP, HTTPS, SSH, POP3, IMAP, STMP, VNC, SMB, SOCKS5, Redis, TELNET, Postgres & MySQL)
Easy to setup customizable honeypots for monitoring network traffic, bots activities and username\password credentials. The current available honeypot
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity
SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.
Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
A flexible framework of neural networks for deep learning
Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops
The fastai deep learning library
Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
Tensors and Dynamic neural networks in Python with strong GPU acceleration
PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b
Generate a single PDF file from MkDocs repository.
PDF Generate Plugin for MkDocs This plugin will generate a single PDF file from your MkDocs repository. This plugin is inspired by MkDocs PDF Export P
Compresses linked and inline javascript or CSS into a single cached file.
Django Compressor Django Compressor processes, combines and minifies linked and inline Javascript or CSS in a Django template into cacheable static fi
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."
FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar
Python bindings for ArrayFire: A general purpose GPU library.
ArrayFire Python Bindings ArrayFire is a high performance library for parallel computing with an easy-to-use API. It enables users to write scientific
Compresses linked and inline javascript or CSS into a single cached file.
Django Compressor Django Compressor processes, combines and minifies linked and inline Javascript or CSS in a Django template into cacheable static fi
Single API for reading, manipulating and writing data in csv, ods, xls, xlsx and xlsm files
pyexcel - Let you focus on data, instead of file formats Support the project If your company has embedded pyexcel and its components into a revenue ge
The fastai deep learning library
Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Deep Learning GPU Training System
DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To
A flexible framework of neural networks for deep learning
Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja
GPU-Accelerated Deep Learning Library in Python
Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
H2O H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Fl
Tensors and Dynamic neural networks in Python with strong GPU acceleration
PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b