369 Repositories
Python stochastic-variational-inference Libraries
Variational autoencoder for anime face reconstruction
VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto
On-device speech-to-intent engine powered by deep learning
Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv
Train a state-of-the-art yolov3 object detector from scratch!
TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.
NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)
PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa
Membership Inference Attack against Graph Neural Networks
MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta
This repository outlines deploying a local Kubeflow v1.3 instance on microk8s and deploying a simple MNIST classifier using KFServing.
Zero to Inference with Kubeflow Getting Started This repository houses all of the tools, utilities, and example pipeline implementations for exploring
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.
PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)
Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)
OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo
Multiple style transfer via variational autoencoder
ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi
Simulation-based inference for the Galactic Center Excess
Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.
Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)
This repository implements variational graph auto encoder by Thomas Kipf.
Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"
Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi
This package implements THOR: Transformer with Stochastic Experts.
THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation
Data Augmentation with Variational Autoencoders
Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting
StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.
Huggingface inference with GPU Docker on AWS
This repository contains code to containerize and deploy a GPU docker on AWS for summarization task. Find a detailed blogpost here Youtube Video Versi
TensorFlow implementation of "Variational Inference with Normalizing Flows"
[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati
Task-based end-to-end model learning in stochastic optimization
Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch
Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin
SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.
Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021
Visions provides an extensible suite of tools to support common data analysis operations
Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis
Klara is a static analysis tools to automatic generate test case, based on SMT (z3) solver, with a powerful ast level inference system.
Automatic test case generation for python and static analysis library
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.
EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.
STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)
DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa
This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced in the paper titled "BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding".
BanglaBERT This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced i
Fourier-Bayesian estimation of stochastic volatility models
fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So
Implementations of polygamma, lgamma, and beta functions for PyTorch
lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.
Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.
Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.
Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
LightSeq: A High Performance Library for Sequence Processing and Generation
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
Sum-Product Probabilistic Language
Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"
transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.
MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot
Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi
Binary Stochastic Neurons in PyTorch
Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"
Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).
VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th
Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs
Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax
Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)
Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference
RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
PyTorch 1.0 inference in C++ on Windows10 platforms
Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/
Serving PyTorch 1.0 Models as a Web Server in C++
Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W
This is the unofficial code of Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes Introduction This is the unofficial code of Deep Dual-re
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal
From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing
pure-predict: Machine learning prediction in pure Python
pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks like scikit-learn and fasttext. It implements the predict methods of these frameworks in pure Python.
Deep Learning Models for Causal Inference
Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.
YoloV5 implemented by TensorFlow2 , with support for training, evaluation and inference.
Efficient implementation of YOLOV5 in TensorFlow2
CausaLM: Causal Model Explanation Through Counterfactual Language Models
CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.
CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U
On the model-based stochastic value gradient for continuous reinforcement learning
On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference
HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.
You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,
The BCNet related data and inference model.
BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,
Clockwork Variational Autoencoder
Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020
README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)
DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"
TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.
Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.
NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.
Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f
Implementation of Stochastic Image-to-Video Synthesis using cINNs.
Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓
A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers how to leverage our APIs for optimized deep learning inference in their applications.
Pytorch-Named-Entity-Recognition-with-BERT
BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi