3977 Repositories
Python suture-detection-pytorch Libraries
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks
PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the
Learning Saliency Propagation for Semi-supervised Instance Segmentation
Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018
Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)
SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai
Semi-supervised learning for object detection
Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object
Weakly-supervised object detection.
Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa
CSD: Consistency-based Semi-supervised learning for object Detection
CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose
Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.
Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper
Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa
PyTorch implementation for Graph Contrastive Learning with Augmentations
Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*
SimulLR - PyTorch Implementation of SimulLR
PyTorch Implementation of SimulLR There is an interesting work[1] about simultan
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.
opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.
Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Remote sensing change detection using PaddlePaddle
Change Detection Laboratory Developing and benchmarking deep learning-based remo
An efficient PyTorch implementation of the evaluation metrics in recommender systems.
recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).
GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."
Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
ncnn is a high-performance neural network inference framework optimized for the mobile platform
ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme
PyTorch-based framework for Deep Hedging
PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21
CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021
SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
Improving Object Detection by Estimating Bounding Box Quality Accurately
Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac
Indonesia's negative news detection using gaussian naive bayes with Django+Scikir Learn
Introduction Indonesia's negative news detection using gaussian naive bayes build with Django and Scikit Learn. There is also any features, are: Input
Bianace Prediction Pytorch Model
Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.
Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"
SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch
CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"
Catbird is an open source paraphrase generation toolkit based on PyTorch.
Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.
SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how
🇰🇷 Text to Image in Korean
KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo
Pytorch implementation of Masked Auto-Encoder
Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick
A similarity measurer on two programming assignments on Online Judge.
A similarity measurer on two programming assignments on Online Judge. Algorithm implementation details are at here. Install Recommend OS: Ubuntu 20.04
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.
SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)
Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez
Python wrapper for Xeno-canto API 2.0. Enables downloading bird data with one command line
Python wrapper for Xeno-canto API 2.0. Enables downloading bird data with one command line. Supports multithreading
Pytorch Implementation for (STANet+ and STANet)
Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"
SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa
A Self-Supervised Contrastive Learning Framework for Aspect Detection
AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning
Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"
Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning
MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut
PyTorch implementation of SwAV (Swapping Assignments between Views)
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.
Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)
RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme
PyTorch code for training MM-DistillNet for multimodal knowledge distillation
There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency
Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo
Autonomous Perception: 3D Object Detection with Complex-YOLO
Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"
[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas
Unofficial PyTorch implementation of Guided Dropout
Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm
Scene-Text-Detection-and-Recognition (Pytorch)
Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time
English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?
PyTorch Implementation for Deep Metric Learning Pipelines
Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email protected]), Biagio Brattoli ([email protected]) When using thi
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than
Efficient face emotion recognition in photos and videos
This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.
The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos
The Multi-Tool Web Vulnerability Scanner.
🟥 RapidScan v1.2 - The Multi-Tool Web Vulnerability Scanner RapidScan has been ported to Python3 i.e. v1.2. The Python2.7 codebase is available on v1
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.
Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.
Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di
Credit Card Fraud Detection
Credit Card Fraud Detection For this project, I used the datasets from the kaggle competition called IEEE-CIS Fraud Detection. The competition aims to
Utility to find games owned by all (or at least some) of the passed players.
SteamCommonGameFinder Utility to find games that are owned by all (or at least some) of the players you pass into this programm. You can already find
Attention for PyTorch with Linear Memory Footprint
Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training models at scale. Hub is used by Google, Waymo, Red Cross, Oxford University, and Omdena.
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo
Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:
EmoTag helps you train emotion detection model for Chinese audios
emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.
ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit
Hand Detection and Finger Detection on Live Feed
Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c
Driver Drowsiness Detection with OpenCV & Dlib
In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.
*ObjDetApp* deploys a pytorch model for object detection
*ObjDetApp* deploys a pytorch model for object detection
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.
pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"
memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic
Deploy recommendation engines with Edge Computing
RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese
The object detection pipeline is based on Ultralytics YOLOv5
AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil
High accurate tool for automatic faces detection with landmarks
faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace
Detection And Breaking With Python
Detection And Breaking IIIIIIIIIIIIIIIIIIII PPPPPPPPPPPPPPPPP VVVVVVVV VVVVVVVV I::::::::II::::::::I P:::::::
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds
PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n
Vietnamese Language Detection and Recognition
Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose
Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and
MvtecAD unsupervised Anomaly Detection
MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly
A python 3 library which helps in using nmap port scanner.
A python 3 library which helps in using nmap port scanner. This is done by converting each nmap command into a callable python3 method or function. System administrators can now automatic nmap scans using python
A Pytorch loader for MVTecAD dataset.
MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain
A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and
Changelog CI is a GitHub Action that enables a project to automatically generate changelogs
What is Changelog CI? Changelog CI is a GitHub Action that enables a project to automatically generate changelogs. Changelog CI can be triggered on pu
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training
TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)
Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all views to learn a common Hamming space, thus making it difficult to handle the data with increasing views or a large number of views.
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'
DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir