1448 Repositories
Python tensorflow-eo-training Libraries
Build Graph Nets in Tensorflow
Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact [email protected] for comments a
Time Series Prediction with tf.contrib.timeseries
TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
Human Pose estimation with TensorFlow framework
Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training
CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.
AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
Improving the robustness and performance of biomedical NLP models through adversarial training
RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
sktime companion package for deep learning based on TensorFlow
NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.
Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture
Provide an input CSV and a target field to predict, generate a model + code to run it.
automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more
Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play
Open source hardware and software platform to build a small scale self driving car.
Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.
Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.
EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)
Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel
A Kitti Road Segmentation model implemented in tensorflow.
KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark
Real-time Joint Semantic Reasoning for Autonomous Driving
MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"
Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the
Training PSPNet in Tensorflow. Reproduce the performance from the paper.
Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support
TensorFlow-based implementation of "Pyramid Scene Parsing Network".
PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet
Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.
ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation
Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".
ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images
Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K
DilatedNet in Keras for image segmentation
Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.
FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th
TensorFlow implementation of ENet
TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th
TensorFlow implementation of ENet, trained on the Cityscapes dataset.
segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too
A TensorFlow implementation of FCN-8s
FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.
semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape
fcn by tensorflow
Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation
##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation
FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)
Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas
An Implementation of Fully Convolutional Networks in Tensorflow.
Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo
Tensorflow implementation of DeepLabv2
TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.
DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up
DeepLab-ResNet rebuilt in TensorFlow
DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras
SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te
Implement slightly different caffe-segnet in tensorflow
Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t
SegNet-like Autoencoders in TensorFlow
SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just
Real-Time Semantic Segmentation in Mobile device
Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur
Generic U-Net Tensorflow implementation for image segmentation
Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu
The main aim of this project is to avoid the accidents in shredding ( Waste Recycling Industry )
shredder-Machine-Hand-Safety The main aim of this project is to avoid the accidents in shredding ( Waste Recycling Industry ) . The Basic function of
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)
AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed
TensorLight - A high-level framework for TensorFlow
TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature
Training BERT with Compute/Time (Academic) Budget
Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time
Doom o’clock is a website/project that features a countdown of “when will the earth end” and a greenhouse gas effect emission prediction that’s predicted
Doom o’clock is a website/project that features a countdown of “when will the earth end” and a greenhouse gas effect emission prediction that’s predicted
ML for NLP and Computer Vision.
Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.
Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro
Single machine, multiple cards training; mix-precision training; DALI data loader.
Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra
Predict the latency time of the deep learning models
Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.
Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)
SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano
yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X
QAT(quantize aware training) for classification with MQBench
MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE
SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
MQBench Quantization Aware Training with PyTorch
MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models
Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
TensorFlow 2 implementation of the Yahoo Open-NSFW model
TensorFlow 2 implementation of the Yahoo Open-NSFW model
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)
GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i
Apollo optimizer in tensorflow
Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js
Visualize the training curve from the *.csv file (tensorboard format).
Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos
Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"
OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)
DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.
W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar
Efficient Training of Audio Transformers with Patchout
PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.
LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S
Traingenerator 🧙 A web app to generate template code for machine learning ✨
Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices
Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"
VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends
Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation
DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning
Revealing and Protecting Labels in Distributed Training
Revealing and Protecting Labels in Distributed Training
training script for space time memory network
Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.
private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why