991 Repositories
Python tensorflow-gpu Libraries
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.
PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr
jupyter/ipython experiment containers for GPU and general RAM re-use
ipyexperiments jupyter/ipython experiment containers and utils for profiling and reclaiming GPU and general RAM, and detecting memory leaks. About Thi
Library for faster pinned CPU - GPU transfer in Pytorch
SpeedTorch Faster pinned CPU tensor - GPU Pytorch variabe transfer and GPU tensor - GPU Pytorch variable transfer, in certain cases. Update 9-29-1
A Python module for getting the GPU status from NVIDA GPUs using nvidia-smi programmically in Python
GPUtil GPUtil is a Python module for getting the GPU status from NVIDA GPUs using nvidia-smi. GPUtil locates all GPUs on the computer, determines thei
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases.
Vulkan Kompute The general purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabl
BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python. Built on RAPIDS cuDF.
A lightweight, GPU accelerated, SQL engine built on the RAPIDS.ai ecosystem. Get Started on app.blazingsql.com Getting Started | Documentation | Examp
cuML - RAPIDS Machine Learning Library
cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t
A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
NVIDIA DALI The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provi
Python 3 Bindings for NVML library. Get NVIDIA GPU status inside your program.
py3nvml Documentation also available at readthedocs. Python 3 compatible bindings to the NVIDIA Management Library. Can be used to query the state of
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Resources cuDF Reference Documentation: Python API refe
Python interface to GPU-powered libraries
Package Description scikit-cuda provides Python interfaces to many of the functions in the CUDA device/runtime, CUBLAS, CUFFT, and CUSOLVER libraries
ArrayFire: a general purpose GPU library.
ArrayFire is a general-purpose library that simplifies the process of developing software that targets parallel and massively-parallel architectures i
CUDA integration for Python, plus shiny features
PyCUDA lets you access Nvidia's CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist-so what's so special about P
📊 A simple command-line utility for querying and monitoring GPU status
gpustat Just less than nvidia-smi? NOTE: This works with NVIDIA Graphics Devices only, no AMD support as of now. Contributions are welcome! Self-Promo
A NumPy-compatible array library accelerated by CUDA
CuPy : A NumPy-compatible array library accelerated by CUDA Website | Docs | Install Guide | Tutorial | Examples | API Reference | Forum CuPy is an im
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark
TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark
A high performance and generic framework for distributed DNN training
BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray
A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.
TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
High-performance TensorFlow library for quantitative finance.
TF Quant Finance: TensorFlow based Quant Finance Library Table of contents Introduction Installation TensorFlow training Development roadmap Examples
An easier way to build neural search on the cloud
An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.
SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition
CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.
Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras
简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images
CNN+LSTM+CTC based OCR implemented using tensorflow.
CNN_LSTM_CTC_Tensorflow CNN+LSTM+CTC based OCR(Optical Character Recognition) implemented using tensorflow. Note: there is No restriction on the numbe
🖺 OCR using tensorflow with attention
tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR
Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别
本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希
Textboxes : Image Text Detection Model : python package (tensorflow)
shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl
Textboxes implementation with Tensorflow (python)
tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize
Textboxes_plusplus implementation with Tensorflow (python)
TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie
TextBoxes re-implement using tensorflow
TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba
Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE
EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE Introduction This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE. Origin Reposi
AdvancedEAST is an algorithm used for Scene image text detect, which is primarily based on EAST, and the significant improvement was also made, which make long text predictions more accurate.https://github.com/huoyijie/raspberrypi-car
AdvancedEAST AdvancedEAST is an algorithm used for Scene image text detect, which is primarily based on EAST:An Efficient and Accurate Scene Text Dete
A tensorflow implementation of EAST text detector
EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.
FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of
Rotational region detection based on Faster-RCNN.
R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:
PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu
This is a c++ project deploying a deep scene text reading pipeline with tensorflow. It reads text from natural scene images. It uses frozen tensorflow graphs. The detector detect scene text locations. The recognizer reads word from each detected bounding box.
DeepSceneTextReader This is a c++ project deploying a deep scene text reading pipeline. It reads text from natural scene images. Prerequsites The proj
This project modify tensorflow object detection api code to predict oriented bounding boxes. It can be used for scene text detection.
This is an oriented object detector based on tensorflow object detection API. Most of the code is not changed except for those related to the need of
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection
InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.
Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)
CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.
Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit
OCR software for recognition of handwritten text
Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis
Handwritten Text Recognition (HTR) system implemented with TensorFlow.
Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture
Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni
Handwritten Text Recognition (HTR) using TensorFlow 2.x
Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data
Generic framework for historical document processing
dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty
Deep Learning Chinese Word Segment
引用 本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098 构建 安装好bazel代码构建工具,安装好tensorflow(目前本项目需
Character Segmentation using TensorFlow
Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)
SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"
Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure
TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2 (supported including English, Korean, Chinese, German and Easy to adapt for other languages)
🤪 TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2. With Tensorflow 2, we can speed-up training/inference progress, optimizer further by using fake-quantize aware and pruning, make TTS models can be run faster than real-time and be able to deploy on mobile devices or embedded systems.
StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning
tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama
Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage
Open standard for machine learning interoperability
Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
Hyperparameter Optimization for TensorFlow, Keras and PyTorch
Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.
Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation
Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy
InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.
Dopamine Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grok
TensorFlow Reinforcement Learning
TRFL TRFL (pronounced "truffle") is a library built on top of TensorFlow that exposes several useful building blocks for implementing Reinforcement Le
Tensorforce: a TensorFlow library for applied reinforcement learning
Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning. TF-Agents makes implementing, de
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Built based on the Apache Arrow columnar memory format,
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens
A collection of infrastructure and tools for research in neural network interpretability.
Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!
🎆 A visualization of the CapsNet layers to better understand how it works
CapsNet-Visualization For more information on capsule networks check out my Medium articles here and here. Setup Use pip to install the required pytho
Model analysis tools for TensorFlow
TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on
QKeras: a quantization deep learning library for Tensorflow Keras
QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa
Graph Neural Networks with Keras and Tensorflow 2.
Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to
Keras community contributions
keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow
tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso
Deep learning with dynamic computation graphs in TensorFlow
TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa
Machine Learning Platform for Kubernetes
Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
TensorFlow implementation of an arbitrary order Factorization Machine
This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d