31 Repositories
Python tsp-approximation Libraries
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"
Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generation, i.e. survival of the fittest of beings.
In the AI for TSP competition we try to solve optimization problems using machine learning.
AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted
Time Dependent DFT in Tamm-Dancoff Approximation
Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff
Optimizing synthesizer parameters using gradient approximation
Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura
Instant neural graphics primitives: lightning fast NeRF and more
Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)
Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours
tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.
Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss
EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O
Recurrent Scale Approximation (RSA) for Object Detection
Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017
Ant Colony Optimization for Traveling Salesman Problem
tsp-aco Ant Colony Optimization for Traveling Salesman Problem Dependencies Python 3.8 tqdm numpy matplotlib To run the solver run main.py from the p
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.
ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.
Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".
Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
Code of ICCV paper: Rethinking Transformer-based Set Prediction for Object Detection
Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.
TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi
Rethinking Transformer-based Set Prediction for Object Detection
Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
pytorch-a2c-ppo-acktr Update (April 12th, 2021) PPO is great, but Soft Actor Critic can be better for many continuous control tasks. Please check out
Hierarchical Uniform Manifold Approximation and Projection
HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra
Solving the Traveling Salesman Problem using Self-Organizing Maps
Solving the Traveling Salesman Problem using Self-Organizing Maps This repository contains an implementation of a Self Organizing Map that can be used
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation
Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes
Uniform Manifold Approximation and Projection
UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu
Uniform Manifold Approximation and Projection
UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu
Python ASN.1 library with a focus on performance and a pythonic API
asn1crypto A fast, pure Python library for parsing and serializing ASN.1 structures. Features Why Another Python ASN.1 Library? Related Crypto Librari
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A