EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Overview

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Paper: EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale submitted to IEEE Robotics and Automation Letters (RA-L) (ArXiv)

Jacek Komorowski, Monika Wysoczanska, Tomasz Trzcinski

Warsaw University of Technology

What's new

  • [2021-10-24] Evaluation code and pretrained models released.

Our other projects

  • MinkLoc3D: Point Cloud Based Large-Scale Place Recognition (WACV 2021): MinkLoc3D
  • MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition (IJCNN 2021): MinkLoc++
  • Large-Scale Topological Radar Localization Using Learned Descriptors (ICONIP 2021): RadarLoc

Introduction

The paper presents a deep neural network-based method for global and local descriptors extraction from a point cloud acquired by a rotating 3D LiDAR sensor. The descriptors can be used for two-stage 6DoF relocalization. First, a course position is retrieved by finding candidates with the closest global descriptor in the database of geo-tagged point clouds. Then, 6DoF pose between a query point cloud and a database point cloud is estimated by matching local descriptors and using a robust estimator such as RANSAC. Our method has a simple, fully convolutional architecture and uses a sparse voxelized representation of the input point cloud. It can efficiently extract a global descriptor and a set of keypoints with their local descriptors from large point clouds with tens of thousand points.

Citation

If you find this work useful, please consider citing:

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.9.1 and MinkowskiEngine 0.5.4 on Ubuntu 20.04 with CUDA 10.2. Note: CUDA 11.1 is not recommended as there are some issues with MinkowskiEngine 0.5.4 on CUDA 11.1.

The following Python packages are required:

  • PyTorch (version 1.9.1)
  • MinkowskiEngine (version 0.5.4)
  • pytorch_metric_learning (version 0.9.99 or above)
  • wandb

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/home/.../Egonn

Datasets

EgoNN is trained and evaluated using the following datasets:

  • MulRan dataset: Sejong traversal is used. The traversal is split into training and evaluation part link
  • Apollo-SouthBay dataset: SunnyvaleBigLoop trajectory is used for evaluation, other 5 trajectories (BaylandsToSeafood, ColumbiaPark, Highway237, MathildaAVE, SanJoseDowntown) are used for training link
  • Kitti dataset: Sequence 00 is used for evaluation link

First, you need to download datasets:

  • For MulRan dataset you need to download ground truth data (*.csv) and LiDAR point clouds (Ouster.zip) for traversals: Sejong01 and Sejong02 (link).
  • Download Apollo-SouthBay dataset using the download link on the dataset website (link).
  • Download Kitti odometry dataset (calibration files, ground truth poses, Velodyne laser data) (link).

After loading datasets you need to generate training pickles for the network training and evaluation pickles for model evaluation.

Training pickles generation

Generating training tuples is very time consuming, as ICP is used to refine the ground truth poses between each pair of neighbourhood point clouds.

cd datasets/mulran
python generate_training_tuples.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_training_tuples.py --dataset_root <apollo_southbay_dataset_root_path>
Evaluation pickles generation
cd datasets/mulran
python generate_evaluation_sets.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_evaluation_sets.py --dataset_root <apollo_southbay_dataset_root_path>

cd ../kitti
python generate_evaluation_sets.py --dataset_root <kitti_dataset_root_path>

Training (training code will be released after the paper acceptance)

First, download datasets and generate training and evaluation pickles as described above. Edit the configuration file config_egonn.txt. Set dataset_folder parameter to point to the dataset root folder. Modify batch_size_limit and secondary_batch_size_limit parameters depending on available GPU memory. Default limits requires at least 11GB of GPU RAM.

To train the EgoNN model, run:

cd training

python train.py --config ../config/config_egonn.txt --model_config ../models/egonn.txt 

Pre-trained Model

EgoNN model trained (on training splits of MulRan and Apollo-SouthBay datasets) is available in weights/model_egonn_20210916_1104.pth folder.

Evaluation

To evaluate a pretrained model run below commands. Ground truth poses between different traversals in all three datasets are slightly misaligned. To reproduce results from the paper, use --icp_refine option to refine ground truth poses using ICP.

cd eval

# To evaluate on test split of Mulran dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type mulran --eval_set test_Sejong01_Sejong02.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of Apollo-SouthBay dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type southbay --eval_set test_SunnyvaleBigloop_1.0_5.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of KITTI dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type kitti --eval_set kitti_00_eval.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

Results

EgoNN performance...

Visualizations

Visualizations of our keypoint detector results. On the left, we show 128 keypoints with the lowest saliency uncertainty (red dots). On the right, 128 keypoints with the highest uncertainty (yellow dots).

Successful registration of point cloud pairs from KITTI dataset gathered during revisiting the same place from different directions. On the left we show keypoint correspondences (RANSAC inliers) found during 6DoF pose estimation with RANSAC. On the right we show point clouds aligned using estimated poses.

License

Our code is released under the MIT License (see LICENSE file for details).

You might also like...
Synthetic LiDAR sequential point cloud dataset with point-wise annotations
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

Official pytorch implementation of
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

Unified learning approach for egocentric hand gesture recognition and fingertip detection
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Comments
  • [Request] Checkpoints of other methods

    [Request] Checkpoints of other methods

    Hi,

    Thank you for releasing your code and checkpoints. I was able to recreate the results in the paper. This is not an issue but I couldn't find your contact details so I thought of posting here.

    I was wondering if you could also release the checkpoints of other methods (eg. MinkLoc3D, DiSCO and DH3D).

    Kind regards, Kavisha

    opened by kavisha725 2
  • Question about the how to set parameters for removing ground plane points?

    Question about the how to set parameters for removing ground plane points?

    Hi, thanks for your nice work. I read your paper and found that you remove uninformative ground plane points with z coordinate below −0.9 m for the MulRan dataset and −1.6 m for the Apollo dataset. May I know how to set the parameters for removing ground plane points when I use other 3D point cloud data?

    Thanks in advance.

    opened by LZL-CS 1
  • Exporting EgoNN model via TorchScript

    Exporting EgoNN model via TorchScript

    Dear Jacek, I'd like to export the EgoNN model in TorchScript format. At the moment, I get an error when loading the entire model. However, when loading only the weights in torch.jit.script, there is no problem. My impression is maybe TorchScript is not compatible with ME. If you have any insights on this issue, I appreciate it if you share them with me. Thanks!

    opened by mramezani64 1
Owner
null
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

null 15 Nov 30, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 2, 2023
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 7, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 3, 2023
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 9, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022