934 Repositories
Python Graph-Bert Libraries
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank lines)
It's an application to calculate I from v and r. It can also plot a graph between V vs I.
Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".
GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli
The implementation of DeBERTa
DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)
GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.
TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut
Reproduction process of BERT on SST2 dataset
BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset
Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN
Build Graph Nets in Tensorflow
Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact [email protected] for comments a
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].
CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R
🛠️ Tools for Transformers compression using Lightning ⚡
Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].
Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].
Predict halo masses from simulations via graph neural networks
HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.
Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》
Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.
EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”
GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is
A graph adversarial learning toolbox based on PyTorch and DGL.
GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat
Training BERT with Compute/Time (Academic) Budget
Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time
Keyword-BERT: Keyword-Attentive Deep Semantic Matching
project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r
A paper using optimal transport to solve the graph matching problem.
GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning
isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21
Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff
IMDB film review sentiment classification based on BERT's supervised learning model.
IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.
SGTL - Spectral Graph Theory Library
SGTL - Spectral Graph Theory Library SGTL is a python library of spectral graph theory methods. The library is still very new and so there are many fe
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua
Metrinome is an all-purpose tool for working with code complexity metrics.
Overview Metrinome is an all-purpose tool for working with code complexity metrics. It can be used as both a REPL and API, and includes: Converters to
Py2neo is a client library and toolkit for working with Neo4j from within Python
Py2neo Py2neo is a client library and toolkit for working with Neo4j from within Python applications. The library supports both Bolt and HTTP and prov
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated
Tandem Mass Spectrum Prediction with Graph Transformers
MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.
Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."
Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)
GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)
Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021
SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'
Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''
CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."
Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp
Adversarial Graph Augmentation to Improve Graph Contrastive Learning
ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa
Code for "Learning Graph Cellular Automata"
Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling
RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated
Code for the paper "On the Power of Edge Independent Graph Models"
Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So
FinEAS: Financial Embedding Analysis of Sentiment 📈
FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene
IGCN : Image-to-graph convolutional network
IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f
Trajectory Prediction with Graph-based Dual-scale Context Fusion
DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"
Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).
For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng
A large-scale database for graph representation learning
A large-scale database for graph representation learning
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation
UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo
Simple GUI python app to show a stocks graph performance. Made with Matplotlib and Tiingo.
stock-graph-python Simple GUI python app to show a stocks graph performance. Made with Matplotlib and Tiingo. Tiingo API Key You will need to add your
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
A command line tool to create a graph representing your Ansible playbook tasks and roles
Ansible Playbook Grapher ansible-playbook-grapher is a command line tool to create a graph representing your Ansible playbook plays, tasks and roles.
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Heterogeneous Temporal Graph Neural Network
Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing
Code for "Learning Graph Cellular Automata"
Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation
BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries
VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding
Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a
Node Dependent Local Smoothing for Scalable Graph Learning
Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"
When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper
SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb
Hierarchical User Intent Graph Network for Multimedia Recommendation
Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.
PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming
Video Matting via Consistency-Regularized Graph Neural Networks
Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio
NLP Text Classification
多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance
Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.
Exponential Graph is Provably Efficient for Decentralized Deep Training
Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".
The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".
The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Count the frequency of letters or words in a text file and show a graph.
Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"
DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im
Dynamic Graph Event Detection
DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra
Harmonic Memory Networks for Graph Completion
HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements
A Broader Picture of Random-walk Based Graph Embedding
Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!
CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning
Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021
MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc