664 Repositories
Python High-res-disentanglement-datasets Libraries
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.
WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining
Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth
Download and preprocess popular sequential recommendation datasets
Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.
This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at [email protected]
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".
A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon
Event Coding for the HV Protocol MEG datasets
Scripts for QA and trigger preprocessing of NIMH HV Protocol Install pip install git+https://github.com/nih-megcore/hv_proc Usage hv_process.py will
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running
A High-Performance Distributed Library for Large-Scale Bundle Adjustment
MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.
HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.
AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.
Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo
Simple, high-school-leveled sequence library written in Python / 간단한 고등학교 수준 수열 라이브러리 (Python)
Simple, high-school-leveled sequence library written in Python
Implementation of Google Brain's WaveGrad high-fidelity vocoder
WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.
DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera
PyTorch toolkit for biomedical imaging
farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.
Neural HMMs are all you need (for high-quality attention-free TTS)
Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]
This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan
A prototype COG-based tile server for sparse Mars datasets
Mars tiler Mars Tiler is a prototype web application that serves tiles from cloud-optimized GeoTIFFs, with an emphasis on supporting planetary dataset
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",
K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R
PartImageNet is a large, high-quality dataset with part segmentation annotations
PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.
ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t
PLUR is a collection of source code datasets suitable for graph-based machine learning.
PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'
Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data
Open source annotation tool for machine learning practitioners.
doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ
Optimizing Deeper Transformers on Small Datasets
DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap
Label Studio is a multi-type data labeling and annotation tool with standardized output format
Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types
Train the HRNet model on ImageNet
High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"
Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks
LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire
DALLE-tools provided useful dataset utilities to improve you workflow with WebDatasets.
DALLE tools DALLE-tools is a github repository with useful tools to categorize, annotate or check the sanity of your datasets. Installation Just clone
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.
Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer
Datasets, Transforms and Models specific to Computer Vision
vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)
ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le
High Dimensional Portfolio Selection with Cardinality Constraints
High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average
Pre-trained Deep Learning models and demos (high quality and extremely fast)
OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye
Tool for running a high throughput data ingestion/transformation workload with MongoDB
Mongo Mangler The mongo-mangler tool is a lightweight Python utility, which you can run from a low-powered machine to execute a high throughput data i
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can detect enemy player models in real time, during gameplay. Finally, a virtual input device will adjust the player's crosshair based on live detections for greater accuracy.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
Veri Setinizi Yolov5 Formatına Dönüştürün
Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme
High performance distributed framework for training deep learning recommendation models based on PyTorch.
PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI platform@Kuaishou Technology, collaborating with ETH. It
🔥 A Bot To Telegram For Download High Qulity Videos & Songs From Youtube
🔥 A Bot To Telegram For Download High Qulity Videos & Songs From Youtube 🎗 Fast And Free Bot No Need To Pay ✅ By SL-Alpha-X-Team ⚡
Deep High-Resolution Representation Learning for Human Pose Estimation
Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos
This is a Saleae Logic custom high level analyzer that allows you to search and mark specific packets.
SaleaePacketParser This is a Saleae Logic custom high level analyzer that allows you to search and mark specific packets. Field "Search For" is used f
Metrics to evaluate quality and efficacy of synthetic datasets.
An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"
PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.
Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets
VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"
DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10
Data imputations library to preprocess datasets with missing data
Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.
A high-performance topological machine learning toolbox in Python
giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews
hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R
largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.
slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"
NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"
DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a
Deep Learning with PyTorch made easy 🚀 !
Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c
CertPy is a high level toolkit for generating x509 (e.g. SSL/TLS/HTTPS) certificates in Python.
CertPy CertPy is a high level toolkit for generating x509 (e.g. SSL/TLS/HTTPS) certificates in Python. Certificate “profiles” are implemented as Pytho
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
NeurIPS 2021 Datasets and Benchmarks Track
AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr
Unsupervised clustering of high content screen samples
Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
Fcpy: A Python package for high performance, fast convergence and high precision numerical fractional calculus computing.
Fcpy: A Python package for high performance, fast convergence and high precision numerical fractional calculus computing.
Python: Wrangled and unpivoted gaming datasets. Tableau: created dashboards - Market Beacon and Player’s Shopping Guide.
Created two information products for GameStop. Using Python, wrangled and unpivoted datasets, and created Tableau dashboards.
Taichi is a parallel programming language for high-performance numerical computations.
Taichi is a parallel programming language for high-performance numerical computations.
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and
VGGFace2-HQ - A high resolution face dataset for face editing purpose
The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose
You Can download any video/image in all social medias very easy and High Speed.
All-Downloader You Can download any video/image in all social medias very easy and High Speed. also you can easily download videos from web browsers s
A Python package for generating concise, high-quality summaries of a probability distribution
GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features
CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA results for single-image motion deblurring, image deraining, image denoising (synthetic and real data), and dual-pixel defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Collection of scripts for making high quality beautiful math-related posters.
Poster Collection of scripts for making high quality beautiful math-related posters. The poster can have as large printing size as 3x2 square feet wit
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts
[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.
Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)
GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C
A high performance implementation of HDBSCAN clustering.
HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates
Implements (high-dimenstional) clustering algorithm
Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)
Subpopulation detection in high-dimensional single-cell data
PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
An experimental Python-to-C transpiler and domain specific language for embedded high-performance computing
An experimental Python-to-C transpiler and domain specific language for embedded high-performance computing
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor
Code-free deep segmentation for computational pathology
NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,
STBP is a way to train SNN with datasets by Backward propagation.
Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Strong AI.
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.
Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi
High-resolution networks and Segmentation Transformer for Semantic Segmentation
High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".
ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images
Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018
ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a
Semantic segmentation models, datasets and losses implemented in PyTorch.
Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm
MVP monorepo to rapidly develop scalable, reliable, high-quality components for Amazon Linux instance configuration management
Ansible Amazon Base Repository Ansible Amazon Base Repository About Setting Up Ansible Environment Configuring Python VENV and Ansible Editor Configur