12426 Repositories
Python Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit Libraries
A collection of online resources to help you on your Tech journey.
Everything Tech Resources & Projects About The Project Coming from an engineering background and looking to up skill yourself on a new field can be di
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode
This bot is made with Python and it is running using Docker container and is concentrated on heroku.
This bot is made with Python and it is running using Docker container and is concentrated on heroku.
Mobile based API for Crunchyroll BETA (and Downloader).
Mobile based API for Crunchyroll BETA (and Downloader). Not restricted on servers and NO CLOUDFLARE
A python script that changes your desktop background based on current weather and time of the day.
Desktop background wallpaper, based on current weather and time A python script that changes your computer's desktop background based on current weath
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,
Hobby Project. A Python Library to create and generate static web pages using just python.
PyWeb 🕸️ 🐍 Current Release: 0.1 A Hobby Project 🤓 PyWeb is a small Library to generate customized static web pages using python. Aimed for new deve
Procedural modeling of fruit and sandstorm in Blender (bpy).
SandFruit Procedural modelling of fruit and sandstorm. Created by Adriana Arcia and Maya Boateng. Last updated December 19, 2020 Goal & Inspiration Ou
Tools for downloading and processing numerical weather predictions
NWP Tools for downloading and processing numerical weather predictions At the moment, this code is focused on downloading historical UKV NWPs produced
Scikit learn library models to account for data and concept drift.
liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d
An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv
FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting
This is a simple web application using Python Flask and MySQL database.
Simple Web Application This is a simple web application using Python Flask and MySQL database. This is used in the demonstration of development of Ans
STBP is a way to train SNN with datasets by Backward propagation.
Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Strong AI.
A "finish the lyrics" game using Spotify, YouTube Transcript, and YouTube Search APIs, coupled with visual machine learning
Singify Introducing Singify, the party game! Challenge your friend to who knows songs better. Play random songs from your very own Spotify playlist an
Task-related Saliency Network For Few-shot learning
Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.
PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.
Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif
Short and long time series classification using convolutional neural networks
time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f
sktime companion package for deep learning based on TensorFlow
NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D
Time Series Cross-Validation -- an extension for scikit-learn
TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini
Statistical and Algorithmic Investing Strategies for Everyone
Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic
scikit-survival is a Python module for survival analysis built on top of scikit-learn.
scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi
PySurvival is an open source python package for Survival Analysis modeling
PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p
Deep Survival Machines - Fully Parametric Survival Regression
Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.
Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo
A Python package for modular causal inference analysis and model evaluations
Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t
pymc-learn: Practical Probabilistic Machine Learning in Python
pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-
DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
DoWhy | An end-to-end library for causal inference Amit Sharma, Emre Kiciman Introducing DoWhy and the 4 steps of causal inference | Microsoft Researc
StackNet is a computational, scalable and analytical Meta modelling framework
StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science
pandas, scikit-learn, xgboost and seaborn integration
pandas, scikit-learn and xgboost integration.
Responsible Machine Learning with Python
Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and evaluating the performance of the model, with a validation scheme of choice, based on the chosen metric.
Python package to visualize and cluster partial dependence.
partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.
Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib
XAI - An eXplainability toolbox for machine learning
XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai
moDel Agnostic Language for Exploration and eXplanation
moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.
Fit interpretable models. Explain blackbox machine learning.
InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture
Provide an input CSV and a target field to predict, generate a model + code to run it.
automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn
Neural Architecture Search Powered by Swarm Intelligence 🐜
Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle
A hyperparameter optimization framework
Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software
🌊 River is a Python library for online machine learning.
River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on streaming data.
onelearn: Online learning in Python
onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more
Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play
Open source hardware and software platform to build a small scale self driving car.
Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks
Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta
Providing a working, flexible, easier and faster installer than the one officially provided by Arch Linux
Purpose The purpose is to bring more people to Arch Linux by providing a working, flexible, easier and faster installer than the one officially provid
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.
Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era
Transform ML models into a native code with zero dependencies
m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.
sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.
ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.
Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi
An orchestration platform for the development, production, and observation of data assets.
Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co
Metaflow is a human-friendly Python/R library that helps scientists and engineers build and manage real-life data science projects
Metaflow Metaflow is a human-friendly Python/R library that helps scientists and engineers build and manage real-life data science projects. Metaflow
Handle, manipulate, and convert data with units in Python
unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return
A collection of video resources for machine learning
Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.
EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num
Fast and customizable vulnerability scanner For JIRA written in Python
Fast and customizable vulnerability scanner For JIRA. 🤔 What is this? Jira-Lens 🔍 is a Python Based vulnerability Scanner for JIRA. Jira is a propri
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)
GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018
UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i
A CV toolkit for my papers.
PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"
Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image
UPSNet: A Unified Panoptic Segmentation Network
UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te
High-resolution networks and Segmentation Transformer for Semantic Segmentation
High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation
Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor
Understanding Convolution for Semantic Segmentation
TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)
Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)
Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel
Real-time Joint Semantic Reasoning for Autonomous Driving
MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"
Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"
Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the
DeconvNet : Learning Deconvolution Network for Semantic Segmentation
DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement
PSPNet in Chainer
PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.
ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation
Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images
Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at http://www.cs.cmu.edu/~aayushb/pixelNet/.
PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f
TensorFlow implementation of ENet
TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th
TensorFlow implementation of ENet, trained on the Cityscapes dataset.
segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e
Fully convolutional networks for semantic segmentation
FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo
Pytorch for Segmentation
Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.
Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a
PyTorch Implementations for DeeplabV3 and PSPNet
Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.
DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras
SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te
Torch implementation of SegNet and deconvolutional network
Torch implementation of SegNet and deconvolutional network
SegNet-like Autoencoders in TensorFlow
SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a
Semantic segmentation models, datasets and losses implemented in PyTorch.
Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.
pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just
Real-Time Semantic Segmentation in Mobile device
Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur