236 Repositories
Python Sequence-Labeling-Early-Exit Libraries
An implementation of a sequence to sequence neural network using an encoder-decoder
Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a
A socket script to obtain chinese phones-sequence for any english word
Foreign Pronunciation Generator (English-Chinese) We provide a simple socket script for acquiring Chinese pronunciation of English words (phones in ai
Simulation of early COVID-19 using SIR model and variants (SEIR ...).
COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E
Early version for manipulate Geo localization data trough API REST.
Backend para obtener los datos (beta) Descripción El servidor está diseñado para recibir y almacenar datos enviados en forma de JSON por una aplicació
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers
hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.
Pulse sequence builder and compiler for q1asm
q1pulse Pulse sequence builder and compiler for q1asm. q1pulse is a simple library to compile pulse sequence to q1asm, the assembly language of Qblox
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.
Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.
VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th
Sequence Modeling with Structured State Spaces
Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli
Sequence Modeling with Structured State Spaces
Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli
A modular, research-friendly framework for high-performance and inference of sequence models at many scales
T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of
Matplotlib Image labeller for classifying images
mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more
A pre-trained model with multi-exit transformer architecture.
ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli
ElasticBERT: A pre-trained model with multi-exit transformer architecture.
This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works
GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.
Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.
Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)
Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps
This is a tool to help people to make a bot for labelling images for machine learning projects.
labeller_images_python_telegramBOT This is a bot to help collect data for any machine learning project. It was developed using the python-telegram-bot
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
TagLab: an image segmentation tool oriented to marine data analysis
TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist
Visage Differentiation is a GUI application for outlining and labeling the visages in an image.
Visage Differentiation Visage Differentiation is a GUI application for outlining and labeling the visages in an image. The main functionality is provi
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.
Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).
Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D
Market calendar RESTful API with holiday, late open, and early close. Over 50+ unique exchange calendars for global equity and futures markets.
Trading Calendar Market calendar RESTful API with holiday, late open, and early close. Over 50+ unique exchange calendars for global equity and future
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"
Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal
ULMFiT for Genomic Sequence Data
Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A
Early days of an Asset Discovery tool.
Please star this project! Written in Python Report Bug . Request Feature DISCLAIMER This project is in its early days, everything you see here is almo
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo
WRENCH: Weak supeRvision bENCHmark
🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
Distiller is an open-source Python package for neural network compression research.
Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres
[ICLR'19] Trellis Networks for Sequence Modeling
TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction
This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se
A Fast Sequence Transducer Implementation with PyTorch Bindings
transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur
Sequence modeling benchmarks and temporal convolutional networks
Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.
SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I
Labelling platform for text using distant supervision
With DataQA, you can label unstructured text documents using rule-based distant supervision.
Sequence-to-Sequence learning using PyTorch
Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train
Sequence to Sequence Models with PyTorch
Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha
Supervised Contrastive Learning for Downstream Optimized Sequence Representations
SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.
✨A Python framework to explore, label, and monitor data for NLP projects
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"
Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir
CLabel is a terminal-based cluster labeling tool that allows you to explore text data interactively and label clusters based on reviewing that data.
CLabel is a terminal-based cluster labeling tool that allows you to explore text data interactively and label clusters based on reviewing that
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learning-based MWP algorithms.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.
DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)
Source Code For Template-Based Named Entity Recognition Using BART
Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h
Sequence-to-Sequence learning using PyTorch
Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing
Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training
Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.
Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req
Empower Sequence Labeling with Task-Aware Language Model
LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra
A graphical Semi-automatic annotation tool based on labelImg and Yolov5
💕YOLOV5 semi-automatic annotation tool (Based on labelImg)
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling
⚠️ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.
An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.
Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
LightSeq: A High Performance Library for Sequence Processing and Generation
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`
Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"
ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers
Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o
MASS: Masked Sequence to Sequence Pre-training for Language Generation
MASS: Masked Sequence to Sequence Pre-training for Language Generation
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Sequence modeling benchmarks and temporal convolutional networks
Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning
H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,
Rubrix is a free and open-source tool for exploring and iterating on data for artificial intelligence projects.
Open-source tool for exploring, labeling, and monitoring data for AI projects
A Fast Sequence Transducer Implementation with PyTorch Bindings
transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction
This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se
[ICLR'19] Trellis Networks for Sequence Modeling
TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico
A highly sophisticated sequence-to-sequence model for code generation
CoderX A proof-of-concept AI system by Graham Neubig (June 30, 2021). About CoderX CoderX is a retrieval-based code generation AI system reminiscent o
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"
SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]
Sequence model architectures from scratch in PyTorch
This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The training loop implements the learner design pattern from fast.ai in pure PyTorch, with access to the loop provided through callbacks. Detailed logging and graphs are also provided with python logging and wandb. Additional implementations will be added.
DeepLab2: A TensorFlow Library for Deep Labeling
DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Markup is an online annotation tool that can be used to transform unstructured documents into structured formats for NLP and ML tasks, such as named-entity recognition. Markup learns as you annotate in order to predict and suggest complex annotations. Markup also provides integrated access to existing and custom ontologies, enabling the prediction and suggestion of ontology mappings based on the text you're annotating.
Markup is an online annotation tool that can be used to transform unstructured documents into structured formats for NLP and ML tasks, such as named-entity recognition. Markup learns as you annotate in order to predict and suggest complex annotations. Markup also provides integrated access to existing and custom ontologies, enabling the prediction and suggestion of ontology mappings based on the text you're annotating.
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering
SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.
TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence
Buy early bsc gems with custom gas fee, slippage, amount. Auto approve token after buy. Sell buyed token with custom gas fee, slippage, amount. And more.
Pancakeswap Sniper bot Full version of Pancakeswap sniping bot used to snipe during fair coin launches. With advanced options and a graphical user int
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"
SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M
You Only 👀 One Sequence
You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"
Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling
Simultaneous NMT/MMT framework in PyTorch
This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi
Discord bot for calculating basic operations and formulas. (Early Development)
MathBot Discord bot for calculating basic operations and formulas. (Early Development) Commits Feel free to contribute to this bot by forking and pull
CAUSE: Causality from AttribUtions on Sequence of Events
CAUSE: Causality from AttribUtions on Sequence of Events
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
Sequence-to-Sequence Framework in PyTorch
nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation
LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transformer, etc. It is therefore best useful for Machine Translation, Text Generation, Dialog, Language Modelling, and other related tasks using these models.
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.
One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):