726 Repositories
Python Visual-Context-Attentional-GAN Libraries
Falcon: Interactive Visual Analysis for Big Data
Falcon: Interactive Visual Analysis for Big Data Crossfilter millions of records without latencies. This project is work in progress and not documente
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.
Learning Neural Painters Fast! using PyTorch and Fast.ai
The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme
Compare GAN code.
Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.
faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2
GAN JAX - A toy project to generate images from GANs with JAX
GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations
Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)
Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,
Self-attentive task GAN for space domain awareness data augmentation.
SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le
Blind visual quality assessment on 360° Video based on progressive learning
Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation
Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)
BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)
DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t
An API wrapper for Discord written in Python.
disnake A modern, easy to use, feature-rich, and async ready API wrapper for Discord written in Python. About disnake All the contributors and develop
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )
GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."
alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi
Chainer implementation of recent GAN variants
Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption
SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W
RP-GAN: Stable GAN Training with Random Projections
RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"
Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators
Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018
MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you
GitHub repository for "Improving Video Generation for Multi-functional Applications"
Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.
Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,
A stable algorithm for GAN training
DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co
PyTorch implementation for ComboGAN
ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Implementation of C-RNN-GAN.
Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang
code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)
News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"
AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models
Official repository for ABC-GAN
ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".
Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)
ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)
gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and
How to Train a GAN? Tips and tricks to make GANs work
(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.
Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)
GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs
Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin
A torch implementation of "Pixel-Level Domain Transfer"
Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.
CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for
Image-to-image translation with conditional adversarial nets
pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat
Image De-raining Using a Conditional Generative Adversarial Network
Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks
pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M
Interactive Image Generation via Generative Adversarial Networks
iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for
A DCGAN to generate anime faces using custom mined dataset
Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.
Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai
Learning Chinese Character style with conditional GAN
zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"
BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq
Curated list of awesome GAN applications and demo
gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such
A list of all named GANs!
The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re
Collection of generative models in Tensorflow
tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa
PyTorch implementation of MulMON
MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations
LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on
Summary of related papers on visual attention
This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.
RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c
A "finish the lyrics" game using Spotify, YouTube Transcript, and YouTube Search APIs, coupled with visual machine learning
Singify Introducing Singify, the party game! Challenge your friend to who knows songs better. Play random songs from your very own Spotify playlist an
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in
High-resolution networks and Segmentation Transformer for Semantic Segmentation
High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.
DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute
Visual Interaction with Code - A portable visual debugger for python
VIC Visual Interaction with Code A simple tool for debugging and interacting with running python code. This tool is designed to make it easy to inspec
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".
Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |
This is a package that allows you to create a key-value vault for storing variables in a global context
This is a package that allows you to create a key-value vault for storing variables in a global context. It allows you to set up a keyring with pre-defined constants which act as keys for the vault. These constants are then what is stored inside the vault. A key is just a string, but the value that the key is mapped to can be assigned to any type of object in Python. If the object is serializable (like a list or a dict), it can also be writen to a JSON file You can then use a decorator to annotate functions that you want to have use this vault to either store return variables in or to extract variables to be used as input for the function.
Generative Art Using Neural Visual Grammars and Dual Encoders
Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)
SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation
Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16
Implementation of TTS with combination of Tacotron2 and HiFi-GAN
Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t
Python Indent - Correct python indentation in Visual Studio Code.
Python Indent Correct python indentation in Visual Studio Code. See the extension on the VSCode Marketplace and its source code on GitHub. Please cons
C++ Environment InitiatorVisual Studio Code C / C++ Environment Initiator
Visual Studio Code C / C++ Environment Initiator Latest Version : v 1.0.1(2021/11/08) .exe link here About : Visual Studio Code에서 C/C++환경을 MinGW GCC/G
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos
Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"
Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.
English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.
MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)
Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.
VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th
Sketch Your Own GAN: Customizing a GAN model with hand-drawn sketches.
Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)
Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review of IEEE TPAMI. It is an extension of our previous ICCV project impersonator, and it has a more powerful ability in generalization and produces higher-resolution results (512 x 512, 1024 x 1024) than the previous ICCV version.
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement
Python package to parse and generate C/C++ code as context aware preprocessor.
Devana Devana is a python tool that make it easy to parsing, format, transform and generate C++ (or C) code. This tool uses libclang to parse the code
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"
GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i
STS Benchmark comprises a selection of the English datasets used in the STS tasks organized in the context of SemEval between 2012 and 2017. The selection of datasets include text from image captions, news headlines and user forums.
stsb_multi_mt_en STS Benchmark comprises a selection of the English datasets used in the STS tasks organized in the context of SemEval between 2012 an
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.
FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu
A treasure chest for visual recognition powered by PaddlePaddle
简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发
Multimodal Temporal Context Network (MTCN)
Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".
Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without
Trajectory Prediction with Graph-based Dual-scale Context Fusion
DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C
Context-free grammar to Sublime-syntax file
Generate a sublime-syntax file from a non-left-recursive, follow-determined, context-free grammar
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi
MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu