1591 Repositories
Python adversarial-networks Libraries
Geometric Deep Learning Extension Library for PyTorch
Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for
High performance implementation of Extreme Learning Machines (fast randomized neural networks).
High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch
EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This
GANsformer: Generative Adversarial Transformers Drew A
GANsformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick *I wish to thank Christopher D. Manning for the fruitf
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra
A Python library that helps data scientists to infer causation rather than observing correlation.
A Python library that helps data scientists to infer causation rather than observing correlation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.
Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775
CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi
Sandwich Batch Normalization
Sandwich Batch Normalization Code for Sandwich Batch Normalization. Introduction We present Sandwich Batch Normalization (SaBN), an extremely easy imp
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity
SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
BaseSpec is a system that performs a comparative analysis of baseband implementation and the specifications of cellular networks.
BaseSpec is a system that performs a comparative analysis of baseband implementation and the specifications of cellular networks. The key intuition of BaseSpec is that a message decoder in baseband software embeds the protocol specification in a machine-friendly structure to parse incoming messages;
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.
Learning to Initialize Neural Networks for Stable and Efficient Training
GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini
Puzzle-CAM: Improved localization via matching partial and full features.
Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.
NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
✨Fast Coreference Resolution in spaCy with Neural Networks
✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
💫 Industrial-strength Natural Language Processing (NLP) in Python
spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc
Dimensionality reduction in very large datasets using Siamese Networks
ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.
Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee
Official implementation of the ICLR 2021 paper
You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing
CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan
Efficient 3D Backbone Network for Temporal Modeling
VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T
[ICLR'21] Counterfactual Generative Networks
This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual images, you can try out the Colab below.
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
Efficient neural networks for analog audio effect modeling
micro-TCN Efficient neural networks for audio effect modeling
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.
NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
✨Fast Coreference Resolution in spaCy with Neural Networks
✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
💫 Industrial-strength Natural Language Processing (NLP) in Python
spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc
Dimensionality reduction in very large datasets using Siamese Networks
ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis
NeuPy is a Tensorflow based python library for prototyping and building neural networks
NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin
Lightweight library to build and train neural networks in Theano
Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C
JAX-based neural network library
Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i
Fast and Easy Infinite Neural Networks in Python
Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply
Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes
TensorFlow-based neural network library
Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
A flexible framework of neural networks for deep learning
Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja
Deep Learning for humans
Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For
Tensors and Dynamic neural networks in Python with strong GPU acceleration
PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b
An Open Source Machine Learning Framework for Everyone
Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a
🔎 Hunt down social media accounts by username across social networks
Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $
FcaNet: Frequency Channel Attention Networks
FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN
artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern
Graph Transformer Architecture. Source code for
Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres
SWA Object Detection
SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA
State of the Art Neural Networks for Deep Learning
pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2
Sample code from the Neural Networks from Scratch book.
Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.
TDN: Temporal Difference Networks for Efficient Action Recognition
TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).
Transformers are Graph Neural Networks!
🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks
CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network
Graph neural network message passing reframed as a Transformer with local attention
Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with
A customisable 3D platform for agent-based AI research
DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a
Backtest 1000s of minute-by-minute trading algorithms for training AI with automated pricing data from: IEX, Tradier and FinViz. Datasets and trading performance automatically published to S3 for building AI training datasets for teaching DNNs how to trade. Runs on Kubernetes and docker-compose. 150 million trading history rows generated from +5000 algorithms. Heads up: Yahoo's Finance API was disabled on 2019-01-03 https://developer.yahoo.com/yql/
Stock Analysis Engine Build and tune investment algorithms for use with artificial intelligence (deep neural networks) with a distributed stack for ru
Emulator for rapid prototyping of Software Defined Networks
Mininet: Rapid Prototyping for Software Defined Networks The best way to emulate almost any network on your laptop! Mininet 2.3.0b2 What is Mininet? M
🗣️ NALP is a library that covers Natural Adversarial Language Processing.
NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.
NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta
💫 Industrial-strength Natural Language Processing (NLP) in Python
spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc
Lightwood is Legos for Machine Learning.
Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu
Machine learning, in numpy
numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install
StellarGraph - Machine Learning on Graphs
StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Code samples for my book "Neural Networks and Deep Learning"
Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod
An Open Source Machine Learning Framework for Everyone
Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras
pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author
Fast, flexible and fun neural networks.
Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as
A flexible framework of neural networks for deep learning
Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja
Lightweight library to build and train neural networks in Theano
Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca
A Temporal Extension Library for PyTorch Geometric
Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library
a delightful machine learning tool that allows you to train, test and use models without writing code
igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop
An Open Source Machine Learning Framework for Everyone
Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a
Tensors and Dynamic neural networks in Python with strong GPU acceleration
PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b
Deep Learning for humans
Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For