7177 Repositories
Python beginners-pytorch-deep-learning Libraries
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe
Implementation of the Swin Transformer in PyTorch.
Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).
TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data
GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu
Learning Spatio-Temporal Transformer for Visual Tracking
STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker
Differentiable Optimizers with Perturbations in Pytorch
Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens
Several simple examples for popular neural network toolkits calling custom CUDA operators.
Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide
Enabling easy statistical significance testing for deep neural networks.
deep-significance: Easy and Better Significance Testing for Deep Neural Networks Contents ⁉️ Why 📥 Installation 🔖 Examples Intermezzo: Almost Stocha
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.
OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme
Polaris is a Face recognition attendance system .
Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio
Learning Calibrated-Guidance for Object Detection in Aerial Images
Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution
DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
Tracking Progress in Natural Language Processing
Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Using approximate bayesian posteriors in deep nets for active learning
Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components
Functional tensors for probabilistic programming
Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Gaussian processes in TensorFlow
Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
machine learning with logical rules in Python
skope-rules Skope-rules is a Python machine learning module built on top of scikit-learn and distributed under the 3-Clause BSD license. Skope-rules a
A scikit-learn based module for multi-label et. al. classification
scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
A Python library for dynamic classifier and ensemble selection
DESlib DESlib is an easy-to-use ensemble learning library focused on the implementation of the state-of-the-art techniques for dynamic classifier and
Extra blocks for scikit-learn pipelines.
scikit-lego We love scikit learn but very often we find ourselves writing custom transformers, metrics and models. The goal of this project is to atte
(AAAI' 20) A Python Toolbox for Machine Learning Model Combination
combo: A Python Toolbox for Machine Learning Model Combination Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License
Large-scale linear classification, regression and ranking in Python
lightning lightning is a library for large-scale linear classification, regression and ranking in Python. Highlights: follows the scikit-learn API con
A library of extension and helper modules for Python's data analysis and machine learning libraries.
Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla
A simplified framework and utilities for PyTorch
Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API
micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.
Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does
High-level batteries-included neural network training library for Pytorch
Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Fast, general, and tested differentiable structured prediction in PyTorch
Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute
Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l
You like pytorch? You like micrograd? You love tinygrad! ❤️
For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.
Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co
An implementation of Performer, a linear attention-based transformer, in Pytorch
Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random
PyTorch extensions for fast R&D prototyping and Kaggle farming
Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf
README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS
(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef
Reformer, the efficient Transformer, in Pytorch
Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently
PyTorch Extension Library of Optimized Scatter Operations
PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch
Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)
News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i
A PyTorch implementation of EfficientNet
EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor
torch-optimizer -- collection of optimizers for Pytorch
torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim
Model summary in PyTorch similar to `model.summary()` in Keras
Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.
Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for
jupyter/ipython experiment containers for GPU and general RAM re-use
ipyexperiments jupyter/ipython experiment containers and utils for profiling and reclaiming GPU and general RAM, and detecting memory leaks. About Thi
Library for faster pinned CPU - GPU transfer in Pytorch
SpeedTorch Faster pinned CPU tensor - GPU Pytorch variabe transfer and GPU tensor - GPU Pytorch variable transfer, in certain cases. Update 9-29-1
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases.
Vulkan Kompute The general purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabl
BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python. Built on RAPIDS cuDF.
A lightweight, GPU accelerated, SQL engine built on the RAPIDS.ai ecosystem. Get Started on app.blazingsql.com Getting Started | Documentation | Examp
cuML - RAPIDS Machine Learning Library
cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t
A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
NVIDIA DALI The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provi
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Resources cuDF Reference Documentation: Python API refe
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Introduction This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code her
🎛 Distributed machine learning made simple.
🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight
Distributed scikit-learn meta-estimators in PySpark
sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.
Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage
Distributed Computing for AI Made Simple
Project Home Blog Documents Paper Media Coverage Join Fiber users email list [email protected] Fiber Distributed Computing for AI Made Simp
A high performance and generic framework for distributed DNN training
BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith
a distributed deep learning platform
Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis
PyTorch extensions for high performance and large scale training.
Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray
A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo
Microsoft Machine Learning for Apache Spark
Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.
TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
Distributed Deep learning with Keras & Spark
Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc
BigDL: Distributed Deep Learning Framework for Apache Spark
BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear
Python module for machine learning time series:
seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
A Python package for time series classification
pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat
A python library for easy manipulation and forecasting of time series.
Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
A machine learning toolkit dedicated to time-series data
tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
A unified framework for machine learning with time series
Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible
Find big moving stocks before they move using machine learning and anomaly detection
Surpriver - Find High Moving Stocks before they Move Find high moving stocks before they move using anomaly detection and machine learning. Surpriver
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies.
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technol
An open source reinforcement learning framework for training, evaluating, and deploying robust trading agents.
TensorTrade: Trade Efficiently with Reinforcement Learning TensorTrade is still in Beta, meaning it should be used very cautiously if used in producti
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax
Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr
An easier way to build neural search on the cloud
An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g
PyTorch reimplementation of minimal-hand (CVPR2020)
Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"
Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv