211 Repositories
Python conditional-layer-normalization Libraries
nbsafety adds a layer of protection to computational notebooks by solving the stale dependency problem when executing cells out-of-order
nbsafety adds a layer of protection to computational notebooks by solving the stale dependency problem when executing cells out-of-order
Instance-conditional Knowledge Distillation for Object Detection
Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition
Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N
When in Doubt: Improving Classification Performance with Alternating Normalization
When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".
Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.
Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment
CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor
MultiLexNorm 2021 competition system from ÚFAL
ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of
Text layer for bio-image annotation.
napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m
AugMax: Adversarial Composition of Random Augmentations for Robust Training
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network
Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ([email protected]), Tiezheng Wang (wtz920729
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data
We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for produce an anomaly score. Then, we merge these two score and produce merged anomaly score as a result.
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.
AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an
Building and deploying AWS Lambda Shared Layers
AWS Lambda Shared Layers This repository is hosting the code from the following blog post: AWS Lambda & Shared layers for Python. The goal of this rep
Multi-layer convolutional LSTM with Pytorch
Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
Deep Networks with Recurrent Layer Aggregation
RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN
This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.
CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther
A Proof-of-Concept Layer 2 Denial of Service Attack that disrupts low level operations of Programmable Logic Controllers within industrial environments. Utilizing multithreaded processing, Automator-Terminator delivers a powerful wave of spoofed ethernet packets to a null MAC address.
Automator-Terminator A Proof-of-Concept Layer 2 Denial of Service Attack that disrupts low level operations of Programmable Logic Controllers (PLCs) w
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.
Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis
Chunked Autoregressive GAN (CARGAN) Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis [paper] [compan
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.
D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'
pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)
TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b
Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers.
ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat
Continuous Conditional Random Field Convolution for Point Cloud Segmentation
CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR
This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation
Decrypt PSSE layer of PSM Games (on PC)
psse-decrypt Decrypt PSSE layer of PSM Games (on PC) Works on Unity and PSM games, and meets all requirements of: https://github.com/vita-nuova/bounti
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.
Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"
model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
CondNet: Conditional Classifier for Scene Segmentation
CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis
Conditional probing: measuring usable information beyond a baseline
Conditional probing: measuring usable information beyond a baseline
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".
pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.
This tools just for education only - Layer-7 or HTTP FLOODER
Layer-7-Flooder This tools just for education only - Layer-7 or HTTP FLOODER Require Col1 Before You Run this tools How To Use Download This Source Ex
Unique image & metadata generation using weighted layer collections.
nft-generator-py nft-generator-py is a python based NFT generator which programatically generates unique images using weighted layer files. The progra
Forward and backwards compatibility layer for Django 1.4, 1.7, 1.8, 1.9, 1.10, and 1.11
django-compat Forward and backwards compatibility layer for Django 1.4 , 1.7 , 1.8, 1.9, 1.10 and 1.11 Consider django-compat as an experiment based o
Object Moderation Layer
django-oml Welcome to the documentation for django-oml! OML means Object Moderation Layer, the idea is to have a mixin model that allows you to modera
Python implementation of the IPv8 layer provide authenticated communication with privacy
Python implementation of the IPv8 layer provide authenticated communication with privacy
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm
This python module is an easy-to-use port of the text normalization used in the paper "Not low-resource anymore: Aligner ensembling, batch filtering, and new datasets for Bengali-English machine translation". It is intended to be used for normalizing / cleaning Bengali and English text.
normalizer This python module is an easy-to-use port of the text normalization used in the paper "Not low-resource anymore: Aligner ensembling, batch
Classifying audio using Wavelet transform and deep learning
Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"
Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"
forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7
Collection of generative models in Pytorch version.
pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".
The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.
Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems
Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).
Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)
VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".
An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr
Synthesizing and manipulating 2048x1024 images with conditional GANs
pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod
Cancer metastasis detection with neural conditional random field (NCRF)
NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis
MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.
The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization
RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)
LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows
DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)
LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".
Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms
Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".
One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'
Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr
HINet: Half Instance Normalization Network for Image Restoration
HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org
Editing a Conditional Radiance Field
Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich
a CLI that provides a generic automation layer for assessing the security of ML models
Counterfit About | Getting Started | Learn More | Acknowledgments | Contributing | Trademarks | Contact Us -------------------------------------------
a CLI that provides a generic automation layer for assessing the security of ML models
a CLI that provides a generic automation layer for assessing the security of ML models
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs
Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang
BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish
Multi-layer convolutional LSTM with Pytorch
Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration
Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali
Python bindings to libpostal for fast international address parsing/normalization
pypostal These are the official Python bindings to https://github.com/openvenues/libpostal, a fast statistical parser/normalizer for street addresses
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)
Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c
An abstraction layer for mathematical optimization solvers.
MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn
⬛ Python Individual Conditional Expectation Plot Toolbox
⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC