4624 Repositories
Python deep-forecast-pytorch Libraries
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs
auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model structure called 'GRU(gated recurrent unit)'.
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)
MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML
PyTorch GPU implementation of the ES-RNN model for time series forecasting
Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series
Implementation of deep learning models for time series in PyTorch.
List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
Fully Convlutional Neural Networks for state-of-the-art time series classification
Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin
Deep Learning for Time Series Classification
Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re
U-Time: A Fully Convolutional Network for Time Series Segmentation
U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re
A Python package for time series augmentation
tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"
REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar
Automated Time Series Forecasting
AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour
Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin
Forecast dynamically at scale with this unique package. pip install scalecast
🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017
pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu
A PyTorch implementation of the continual learning experiments with deep neural networks
Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.
Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s
Adds timm pretrained backbone to pytorch's FasterRcnn model
timmFasterRcnn model_config.py - it returns the model,feat_sizes,output channel and the feat layer names, which is reqd by the Add_FPN.py file Add_FP
Implementation of Convolutional LSTM in PyTorch.
ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法
PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.
Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex
Repository of continual learning papers
Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.
The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w
Datasets, tools, and benchmarks for representation learning of code.
The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided
SphereFace: Deep Hypersphere Embedding for Face Recognition
SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa
Creative Applications of Deep Learning w/ Tensorflow
Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th
A Collection of Cheatsheets, Books, Questions, and Portfolio For DS/ML Interview Prep
Here are the sections: Data Science Cheatsheets Data Science EBooks Data Science Question Bank Data Science Case Studies Data Science Portfolio Data J
Deep Learning Specialization by Andrew Ng, deeplearning.ai.
Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch
Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.
Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的
List of papers, code and experiments using deep learning for time series forecasting
Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BERT.
Koç University deep learning framework.
Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU
Searches through git repositories for high entropy strings and secrets, digging deep into commit history
truffleHog Searches through git repositories for secrets, digging deep into commit history and branches. This is effective at finding secrets accident
Setup and customize deep learning environment in seconds.
Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le
Hide screen when boss is approaching.
BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.
Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo
Distributed deep learning on Hadoop and Spark clusters.
Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".
Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema
Official repository for "Orthogonal Projection Loss" (ICCV'21)
Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page
Learning with Noisy Labels via Sparse Regularization, ICCV2021
Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"
DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)
FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization
FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng
Train Scene Graph Generation for Visual Genome and GQA in PyTorch = 1.2 with improved zero and few-shot generalization.
Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr
Official implementation of MSR-GCN (ICCV 2021 paper)
MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup
PyTorch implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021)
MT-ORL: Multi-Task Occlusion Relationship Learning Official implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021) P
Resco: A simple python package that report the effect of deep residual learning
resco Description resco is a simple python package that report the effect of dee
ALBERT-pytorch-implementation - ALBERT pytorch implementation
ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices
deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen
A curated list of awesome Active Learning
Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea
python 93% acc. CNN Dogs Vs Cats ( Pytorch )
English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于
A library for graph deep learning research
Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?
make ASCII Art by Deep Learning
DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems
Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.
Machine Learning Study 혼자 해보기
Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil
Code for the Lovász-Softmax loss (CVPR 2018)
The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models. Advbox give a command line tool to generate adversarial examples with Zero-Coding.
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]
Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow
Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'
Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ
Machine Learning University: Accelerated Computer Vision Class
Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras
Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet
One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix
🏖 Keras Implementation of Painting outside the box
Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So
DL course co-developed by YSDA, HSE and Skoltech
Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec
Full Stack Deep Learning Labs
Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec
Implementations of CNNs, RNNs, GANs, etc
Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co
This repository contains small projects related to Neural Networks and Deep Learning in general.
ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje
StarGAN - Official PyTorch Implementation (CVPR 2018)
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Code for the paper "Jukebox: A Generative Model for Music"
Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset
AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch
U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical
PyTorch implementations of the beta divergence loss.
Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.
Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%
Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c
Code for paper "Multi-level Disentanglement Graph Neural Network"
Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)
Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together
CIFAR-10 Photo Classification
Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand
Simple web app example serving a PyTorch model using streamlit and FastAPI
streamlit-fastapi-model-serving Simple example of usage of streamlit and FastAPI for ML model serving described on this blogpost and PyConES 2020 vide
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku
Reinforcement learning algorithms in RLlib
raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b
An easy-to-use app to visualise attentions of various VQA models.
Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click
An image classification app boilerplate to serve your deep learning models asap!
Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho
An open-source project for applying deep learning to medical scenarios
Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.
📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.
Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2
Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.
Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage
Multi-Modal Machine Learning toolkit based on PyTorch.
简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops
torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.
Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar
Official Pytorch implementation of C3-GAN
Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).
DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'
Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll