4686 Repositories
Python deep-graph-library Libraries
a deep learning model for page layout analysis / segmentation.
OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-
ocroseg - This is a deep learning model for page layout analysis / segmentation.
ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by
Page to PAGE Layout Analysis Tool
P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli
Deep learning based page layout analysis
Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page
Deep Learning Chinese Word Segment
引用 本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098 构建 安装好bazel代码构建工具,安装好tensorflow(目前本项目需
ARU-Net - Deep Learning Chinese Word Segment
ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the
Library used to deskew a scanned document
Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in
Implementation of "Deep Implicit Templates for 3D Shape Representation"
Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"
NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。
MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"
FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti
DECAF: Deep Extreme Classification with Label Features
DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain
A spherical CNN for weather forecasting
DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew
A deep learning-based translation library built on Huggingface transformers
DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)
Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021) Introduction This is the official code of Deep Dual Consecutive Network for Human P
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
Implicit Graph Neural Networks
Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021
Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations
PubMed Mapper: A Python library that map PubMed XML to Python object
pubmed-mapper: A Python Library that map PubMed XML to Python object 中文文档 1. Philosophy view UML Programmatically access PubMed article is a common ta
TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
Machine learning metrics for distributed, scalable PyTorch applications.
cysimdjson - Very fast Python JSON parsing library
Fast JSON parsing library for Python, 7-12 times faster than standard Python JSON parser.
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.
Python library to make development of portfolio analysis faster and easier
Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo
Dogs classification with Deep Metric Learning using some popular losses
Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"
Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.
PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning
tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.
SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor
Very deep VAEs in JAX/Flax
Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I
Open world survival environment for reinforcement learning
Crafter Open world survival environment for reinforcement learning. Highlights Crafter is a procedurally generated 2D world, where the agent finds foo
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)
Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing
Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch
Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage
Open standard for machine learning interoperability
Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open
Framework and Library for Distributed Online Machine Learning
Jubatus The Jubatus library is an online machine learning framework which runs in distributed environment. See http://jubat.us/ for details. Quick Sta
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc
Image augmentation library in Python for machine learning.
Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe
Image augmentation for machine learning experiments.
imgaug This python library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much lar
Open Source Computer Vision Library
OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m
Python audio and music signal processing library
madmom Madmom is an audio signal processing library written in Python with a strong focus on music information retrieval (MIR) tasks. The library is i
A library for augmenting annotated audio data
muda A library for Musical Data Augmentation. muda package implements annotation-aware musical data augmentation, as described in the muda paper. The
LibXtract is a simple, portable, lightweight library of audio feature extraction functions.
LibXtract LibXtract is a simple, portable, lightweight library of audio feature extraction functions. The purpose of the library is to provide a relat
C++ library for audio and music analysis, description and synthesis, including Python bindings
Essentia Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval released under the Affero GPL license.
a library for audio and music analysis
aubio aubio is a library to label music and sounds. It listens to audio signals and attempts to detect events. For instance, when a drum is hit, at wh
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization
NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi
Hyperparameter Optimization for TensorFlow, Keras and PyTorch
Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes
A Free and Open Source Python Library for Multiobjective Optimization
Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)
🎯 A comprehensive gradient-free optimization framework written in Python
Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not
A library for hidden semi-Markov models with explicit durations
hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch
PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation
Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Bayesian dessert for Lasagne
Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy
InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
ChainerRL is a deep reinforcement learning library built on top of Chainer.
ChainerRL ChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Ch
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
Tensorforce: a TensorFlow library for applied reinforcement learning
Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning. TF-Agents makes implementing, de
An open source python library for automated feature engineering
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to
A Python toolkit for processing tabular data
meza: A Python toolkit for processing tabular data Index Introduction | Requirements | Motivation | Hello World | Usage | Interoperability | Installat
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Built based on the Apache Arrow columnar memory format,
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens
Interpretability and explainability of data and machine learning models
AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase
A library that implements fairness-aware machine learning algorithms
Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M
Python Library for Model Interpretation/Explanations
Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system
A library for debugging/inspecting machine learning classifiers and explaining their predictions
ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
An intuitive library to add plotting functionality to scikit-learn objects.
Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The
Python histogram library - histograms as updateable, fully semantic objects with visualization tools. [P]ython [HYST]ograms.
physt P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM). The goal is to unify different
Python library that makes it easy for data scientists to create charts.
Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l
Source-to-Source Debuggable Derivatives in Pure Python
Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an
Transfer Learning library for Deep Neural Networks.
Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon
NLP made easy
GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l
Gluon CV Toolkit
Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in
Simple, efficient and flexible vision toolbox for mxnet framework.
MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi
A clear, concise, simple yet powerful and efficient API for deep learning.
The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for
QKeras: a quantization deep learning library for Tensorflow Keras
QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa
Graph Neural Networks with Keras and Tensorflow 2.
Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.
Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip
Distributed Deep learning with Keras & Spark
Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc
Keras community contributions
keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow
tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso
Deep learning with dynamic computation graphs in TensorFlow
TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph
Machine Learning Platform for Kubernetes
Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens