3967 Repositories
Python deep-nlp-models Libraries
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time.
Sharpness-Aware Minimization for Efficiently Improving Generalization
Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim
Pytorch implementation of MaskFlownet
MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1
A framework for analyzing computer vision models with simulated data
3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"
Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o
Benchmarks for semi-supervised domain generalization.
Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.
Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)
DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression
Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang
The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".
SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .
🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La
What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space
What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space Introduction: Environment: Python3.6.5, PyTorch1.5.0 Dataset: CIFAR-10, Image
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cross-device use-cases over FEDn networks.
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)
DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status
Deep learning-based approach to discovering Granger causality networks in multivariate time series
Granger causality discovery for neural networks.
Jupyter notebooks for the code samples of the book "Deep Learning with Python"
Jupyter notebooks for the code samples of the book "Deep Learning with Python"
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."
Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"
Pytorch implementation of Generative Models as Distributions of Functions 🌿
Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation
Inferoxy is a service for quick deploying and using dockerized Computer Vision models.
Inferoxy is a service for quick deploying and using dockerized Computer Vision models. It's a core of EORA's Computer Vision platform Vision Hub that runs on top of AWS EKS.
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.
Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.
tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).
Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).
Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper
Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating
HyperLib: Deep learning in the Hyperbolic space
HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models
SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-driven approaches built around these algorithms enable the simplification of creating faster and smaller models for the ML performance community at large.
🔬 A curated list of awesome machine learning strategies & tools in financial market.
🔬 A curated list of awesome machine learning strategies & tools in financial market.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
Implementation of ProteinBERT in Pytorch
ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc
Deep Image Search - AI-Based Image Search Engine
Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search technique.
Anonymize BLM Protest Images
Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us
Cross-modal Deep Face Normals with Deactivable Skip Connections
Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ
Registration Loss Learning for Deep Probabilistic Point Set Registration
RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).
UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)
This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.
Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.
Implementation of ProteinBERT in Pytorch
ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.
Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.
IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot
Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"
Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021] Official PyTorch implementation
FluxTraining.jl gives you an endlessly extensible training loop for deep learning
A flexible neural net training library inspired by fast.ai
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.
DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.
TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim
Deep functional residue identification
DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)
MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.
Deep Learning Visuals contains 215 unique images divided in 23 categories
Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide".
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
True Few-Shot Learning with Language Models
This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex
PyTorch implementation of some learning rate schedulers for deep learning researcher.
pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code
Local Attention - Flax module for Jax
Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"
Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High
A GPT, made only of MLPs, in Jax
MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion
DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re
Implementation of the paper "Shapley Explanation Networks"
Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta
An evaluation toolkit for voice conversion models.
Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc
Procedural 3D data generation pipeline for architecture
Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik
covid question answering datasets and fine tuned models
Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see
Generate lookml for views from dbt models
dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"
Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.
Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"
Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr
Deep Probabilistic Programming Course @ DIKU
Deep Probabilistic Programming Course @ DIKU
An end-to-end machine learning library to directly optimize AUC loss
LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"
When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable
GPT, but made only out of gMLPs
GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)
Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction
Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl
Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)
Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way
Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production. Liminal provides a Domain Specific Language to build ML workflows on top of Apache Airflow.
A Lucid Framework for Transparent and Interpretable Machine Learning Models.
Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"
GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai
An evaluation toolkit for voice conversion models.
Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc
Estimation of human density in a closed space using deep learning.
Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation
SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale
XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools
Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Language models are open knowledge graphs ( non official implementation )
language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag
An All-MLP solution for Vision, from Google AI
MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"
UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".
Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim
Deep Compression for Dense Point Cloud Maps.
DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.
SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining