586 Repositories
Python efficient-inference Libraries
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con
Make YouTube videos tasks in Todoist faster and time efficient!
Youtubist Basically fork of yt-dlp python module to my needs. You can paste playlist or channel link on the YouTube. It will automatically format to s
Very efficient backup system based on the git packfile format, providing fast incremental saves and global deduplication
Very efficient backup system based on the git packfile format, providing fast incremental saves and global deduplication (among and within files, including virtual machine images). Current release is 0.31, and the development branch is master. Please post problems or patches to the mailing list for discussion (see the end of the README below).
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021
Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.
Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ
EfficientMPC - Efficient Model Predictive Control Implementation
efficientMPC Efficient Model Predictive Control Implementation The original algo
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)
CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !
Machine learning library for fast and efficient Gaussian mixture models
This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'
Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.
CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr
Understanding and Overcoming the Challenges of Efficient Transformer Quantization
Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'
Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'
Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs
GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)
Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)
Recursive-Bucket-Sort - An efficient sorting algorithm (implemented in Python) inspired by the Bucket Sort and the Pigeonhole Sort
Recursive Bucket Sorting Algorithm An algorithm (implemented here in Python) mai
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.
Ukiyo - A simple, minimalist and efficient discord vanity URL sniper
Ukiyo - a simple, minimalist and efficient discord vanity URL sniper. Ukiyo is easy to use, has a very visually pleasing interface, and has great spee
Memory efficient transducer loss computation
Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.
COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.
opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.
An efficient PyTorch implementation of the evaluation metrics in recommender systems.
recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark
ncnn is a high-performance neural network inference framework optimized for the mobile platform
ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".
No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
Intelligent Video Analytics toolkit based on different inference backends.
English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p
Efficient face emotion recognition in photos and videos
This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien
A minimalistic example of preparing a model for (synchronous) inference in production.
A minimalistic example of preparing a model for (synchronous) inference in production.
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"
A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef
Baseline inference Algorithm for the STOIC2021 challenge.
STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme
Python3 command-line tool for the inference of Boolean rules and pathway analysis on omics data
BONITA-Python3 BONITA was originally written in Python 2 and tested with Python 2-compatible packages. This version of the packages ports BONITA to Py
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"
Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).
Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh
🍰 ConnectMP - An easy and efficient way to share data between Processes in Python.
ConnectMP - Taking Multi-Process Data Sharing to the moon 🚀 Contribute · Community · Documentation 🎫 Introduction : 🍤 ConnectMP is the easiest and
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation
SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]
MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.
Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin
v objective diffusion inference code for PyTorch.
v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The
A library that allows for inference on probabilistic models
Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF
Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF
Efficient 3D human pose estimation in video using 2D keypoint trajectories
3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch
Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o
An Auto-Grinding bot made for Pokemeow. Efficient but not many features yet
PokeGrinder 🤖 This is an Auto-Grinding bot made for Pokemeow. Efficient but not many features yet. Supported features This bot can currently handle :
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches
BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applications: 1) finding overlapping reads and 2) read mapping. Described by Firtina et al.
Ensembling Off-the-shelf Models for GAN Training
Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br
FastFormers - highly efficient transformer models for NLU
FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
SPEAR: Semi suPErvised dAta progRamming
Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem
Type4Py: Deep Similarity Learning-Based Type Inference for Python
Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ
Adaptation through prediction: multisensory active inference torque control
Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst
A minimal code for fairseq vq-wav2vec model inference.
vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"
MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU
Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'
IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.
Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.
Validation and inference over LinkML instance data using souffle
Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022
PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed
Parameter Efficient Deep Probabilistic Forecasting
PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation
Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"
UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)
Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network
A simple and efficient computing package for Genshin Impact gacha analysis
GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;
MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh
Rainbow DQN implementation accompanying the paper "Fast and Data-Efficient Training of Rainbow" which reaches 205.7 median HNS after 10M frames. 🌈
Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Randomisation-based inference in Python based on data resampling and permutation.
Randomisation-based inference in Python based on data resampling and permutation.
Train Dense Passage Retriever (DPR) with a single GPU
Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G
A Fast Knowledge Distillation Framework for Visual Recognition
FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"
ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.
FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f
A Model for Natural Language Attack on Text Classification and Inference
TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re
Source code for "Efficient Training of BERT by Progressively Stacking"
Introduction This repository is the code to reproduce the result of Efficient Training of BERT by Progressively Stacking. The code is based on Fairseq
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"
EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".
Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".
FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021
efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"
Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua
Efficient training of deep recommenders on cloud.
HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).
Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua