1096 Repositories
Python graph-algorithms Libraries
CLI tool to computes CO2 emissions of HPC computations following green-algorithms.org methodology
gqueue gqueue is a CLI (command line interface) tool that computes carbon footprint of HPC computations on clusters running slurm. It follows the meth
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.
EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.
Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”
GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is
A graph adversarial learning toolbox based on PyTorch and DGL.
GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat
A paper using optimal transport to solve the graph matching problem.
GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning
isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21
Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff
My dynamic programming algorithms for exercise and fun
My Dynamic Programming Algorithms giraycoskun [email protected] It is a repo for various dynamic programming algorithms for exercise.
Algorithms for calibrating power grid distribution system models
Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the
SGTL - Spectral Graph Theory Library
SGTL - Spectral Graph Theory Library SGTL is a python library of spectral graph theory methods. The library is still very new and so there are many fe
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua
Metrinome is an all-purpose tool for working with code complexity metrics.
Overview Metrinome is an all-purpose tool for working with code complexity metrics. It can be used as both a REPL and API, and includes: Converters to
Py2neo is a client library and toolkit for working with Neo4j from within Python
Py2neo Py2neo is a client library and toolkit for working with Neo4j from within Python applications. The library supports both Bolt and HTTP and prov
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated
Tandem Mass Spectrum Prediction with Graph Transformers
MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.
Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."
Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)
GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i
Parameterising Simulated Annealing for the Travelling Salesman Problem
Parameterising Simulated Annealing for the Travelling Salesman Problem
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021
SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'
Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''
CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.
UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."
Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp
Adversarial Graph Augmentation to Improve Graph Contrastive Learning
ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa
Parameterising Simulated Annealing for the Travelling Salesman Problem
Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given
Code for "Learning Graph Cellular Automata"
Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro
Deep Learning Algorithms for Hedging with Frictions
Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,
Implementation of popular bandit algorithms in batch environments.
batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling
RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.
Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated
Data science, Data manipulation and Machine learning package.
duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l
scikit-multimodallearn is a Python package implementing algorithms multimodal data.
scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul
PECOS - Prediction for Enormous and Correlated Spaces
PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i
Code for the paper "On the Power of Edge Independent Graph Models"
Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So
IGCN : Image-to-graph convolutional network
IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f
Trajectory Prediction with Graph-based Dual-scale Context Fusion
DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program
Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,
Algorithms covered in the Bioinformatics Course part of the Cambridge Computer Science Tripos
Bioinformatics This is a repository of all the algorithms covered in the Bioinformatics Course part of the Cambridge Computer Science Tripos Algorithm
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"
Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng
A large-scale database for graph representation learning
A large-scale database for graph representation learning
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query
Decision Border Visualizer for Classification Algorithms
dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation
UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo
Simple GUI python app to show a stocks graph performance. Made with Matplotlib and Tiingo.
stock-graph-python Simple GUI python app to show a stocks graph performance. Made with Matplotlib and Tiingo. Tiingo API Key You will need to add your
Programming Foundations Algorithms With Python
Programming-Foundations-Algorithms Algorithms purpose to solve a specific proplem with a sequential sets of steps for instance : if you need to add di
A simple python application to visualize sorting algorithms.
Visualize sorting algorithms A simple python application to visualize sorting algorithms. Sort Algorithms Name Function Name O( ) Bubble Sort bubble_s
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
A command line tool to create a graph representing your Ansible playbook tasks and roles
Ansible Playbook Grapher ansible-playbook-grapher is a command line tool to create a graph representing your Ansible playbook plays, tasks and roles.
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Heterogeneous Temporal Graph Neural Network
Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing
Code for "Learning Graph Cellular Automata"
Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation
BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries
VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding
Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a
Node Dependent Local Smoothing for Scalable Graph Learning
Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper
SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb
Hierarchical User Intent Graph Network for Multimedia Recommendation
Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph
Video Matting via Consistency-Regularized Graph Neural Networks
Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)
Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati
Unbiased Learning To Rank Algorithms (ULTRA)
This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance
Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.
Exponential Graph is Provably Efficient for Decentralized Deep Training
Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".
The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C
Implementation of several Bayesian multi-target tracking algorithms, including Poisson multi-Bernoulli mixture filters for sets of targets and sets of trajectories. The repository also includes the GOSPA metric and a metric for sets of trajectories to evaluate performance.
This repository contains the Matlab implementations for the following multi-target filtering/tracking algorithms: - Folder PMBM contains the implemen
Repository for Driving Style Recognition algorithms for Autonomous Vehicles
Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM
This repo is all about different data structures and algorithms..
Data Structure and Algorithm : Want to learn data strutrues and algorithms ??? Then Stop thinking more and start to learn today. This repo will help y
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".
The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Some toy examples of score matching algorithms written in PyTorch
toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance
Count the frequency of letters or words in a text file and show a graph.
Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"
DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im
Dynamic Graph Event Detection
DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.
IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con
Harmonic Memory Networks for Graph Completion
HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements
A Broader Picture of Random-walk Based Graph Embedding
Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!
CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning
Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021
MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc
A simple voice detection system which can be applied practically for designing a device with capability to detect a baby’s cry and automatically turning on music
Auto-Baby-Cry-Detection-with-Music-Player A simple voice detection system which can be applied practically for designing a device with capability to d
One-Stop Destination for codes of all Data Structures & Algorithms
CodingSimplified_GK This repository is aimed at creating a One stop Destination of codes of all Data structures and Algorithms along with basic explai
Zero-dependency Cryptography Python Module with a self made method
TesohhCrypt TesohhCrypt is a zero-dependency Cryptography Python Module, with a method that i made. (likely someone already made a similar one, but i
Neo4j Movies Example application with Flask backend using the neo4j-python-driver
Neo4j Movies Application: Quick Start This example application demonstrates how easy it is to get started with Neo4j in Python. It is a very simple we
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.
MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co
Django database backed celery periodic task scheduler with support for task dependency graph
Djag Scheduler (Dj)ango Task D(AG) (Scheduler) Overview Djag scheduler associates scheduling information with celery tasks The task schedule is persis
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021
Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra