309 Repositories
Python inference-speed Libraries
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.
Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio
CLOOB training (JAX) and inference (JAX and PyTorch)
cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train
Example notebooks for working with SageMaker Studio Lab. Sign up for an account at the link below!
SageMaker Studio Lab Sample Notebooks Available today in public preview. If you are looking for a no-cost compute environment to run Jupyter notebooks
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.
NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne
My Solutions to 120 commonly asked data science interview questions.
Data_Science_Interview_Questions Introduction 👋 Here are the answers to 120 Data Science Interview Questions The above answer some is modified based
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations
💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily install with pip.
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.
CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"
5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.
PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools
Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t
Includes PyTorch - Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.
ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.
Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)
ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)
The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The software contains most of the data sources required in the process of GNSS scientific research and learning. The way of parallel download greatly improves the efficiency of download.
Semi-automated OpenVINO benchmark_app with variable parameters
Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of given options.
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"
DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation
Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.
PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my
ZeroGen: Efficient Zero-shot Learning via Dataset Generation
ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero
Speed-Test - You can check your intenet speed using this tool
Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E
Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)
Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical V
Over-the-Air Ensemble Inference with Model Privacy
Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal
Kglab - an abstraction layer in Python for building knowledge graphs
Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, pyarrow, etc.
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed
fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a
Official Implementation of "Transformers Can Do Bayesian Inference"
Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.
SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.
Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch
Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b
Data-depth-inference - Data depth inference with python
Welcome! This readme will guide you through the use of the code in this reposito
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an
This project implements "virtual speed" from heart rate monito
ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple
Accelerating BERT Inference for Sequence Labeling via Early-Exit
Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"
Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference, with the design goal of unifying the automation (of Monte Carlo simulations), user-friendliness (of the library), accessibility (from multiple programming environments), high-performance (at runtime), and scalability (across many parallel processors).
An curated collection of awesome resources about networking in cybersecurity
An ongoing curated collection of awesome software, libraries, frameworks, talks & videos, best practices, learning tutorials and important practical resources about networking in cybersecurity
Bayesian Inference Tools in Python
BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient
Efficient Online Bayesian Inference for Neural Bandits
Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.
A set of decks and notebooks with exercises for use in a hands-on causal inference tutorial session
intro-to-causal-inference A introduction to causal inference using common tools from the python data stack Table of Contents Getting Started Install g
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV
ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data
VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De
A Blender addon for VSE that auto-adjusts video strip's length, if speed effect is applied.
Blender VSE Speed Adjust Addon When using Video Sequence Editor in Blender, the speed effect strip doesn't auto-adjusts clip length when changing its
A Python implementation of active inference for Markov Decision Processes
A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks
Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor
Secsie is a configuration language made for speed, beauty, and ease of use.
secsie-conf pip3 install secsie-conf Secsie is a configuration language parser for Python, made for speed and beauty. Instead of writing config files
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks
Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"
LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.
GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a
Two predictive attributes (Speed and Angle) and one attribute target (Power)
Two predictive attributes (Speed and Angle) and one attribute target (Power). A container crane has the function of transporting containers from one point to another point. The difficulty of this task lies in the fact that the container is connected to the bridge crane by cables causing an opening angle while the container is being transported, interfering with the operation at high speeds due to oscillation that occurs at the end point, which could cause accidents.
A curated list for getting up to speed on crypto and decentralized networks
crypto reading list A curated list for getting up to speed on crypto and decentralized networks. The content on the toplevel page contains what we con
Trax — Deep Learning with Clear Code and Speed
Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us
Natural Language Processing Best Practices & Examples
NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.
Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ
Tgbox-bench - Simple TGBOX upload speed benchmark
TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)
CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.
CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'
Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models
Ffmpeg videostream - High speed video frame access in Python, using FFmpeg and FFshow
FFmpeg VideoStream High speed video frame access in Python, using FFmpeg and FFshow This script requires: Karl Kroening's 'ffmpeg-python' library. (ht
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.
ncnn is a high-performance neural network inference framework optimized for the mobile platform
ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection
Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.
SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how
Intelligent Video Analytics toolkit based on different inference backends.
English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)
RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme
Analysis and plotting for motor/prop/ESC characterization, thrust vs RPM and torque vs thrust
esc_test This is a Python package used to plot and analyze data collected for the purpose of characterizing a particular propeller, motor, and ESC con
A minimalistic example of preparing a model for (synchronous) inference in production.
A minimalistic example of preparing a model for (synchronous) inference in production.
Examples of using f2py to get high-speed Fortran integrated with Python easily
f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr
Baseline inference Algorithm for the STOIC2021 challenge.
STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme
Python compiler that massively increases Python's code performance without code changes.
Flyable - A python compiler for highly performant code Flyable is a Python compiler that generates efficient native code. It uses different techniques
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency
Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they
Ninja is a small build system with a focus on speed.
Ninja Ninja is a small build system with a focus on speed. https://ninja-build.org/ See the manual or doc/manual.asciidoc included in the distribution
Python3 command-line tool for the inference of Boolean rules and pathway analysis on omics data
BONITA-Python3 BONITA was originally written in Python 2 and tested with Python 2-compatible packages. This version of the packages ports BONITA to Py
Albert launcher extension for converting units of length, mass, speed, temperature, time, current, luminosity, printing measurements, molecular substance, and more
unit-converter-albert-ext Extension for converting units of length, mass, speed, temperature, time, current, luminosity, printing measurements, molecu
v objective diffusion inference code for PyTorch.
v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The
A library that allows for inference on probabilistic models
Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using
Contextual speed detection for python
Speed Prediction using Optical Flow and 2D CNN About the challenge: Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the s
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available
Type4Py: Deep Similarity Learning-Based Type Inference for Python
Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ
Adaptation through prediction: multisensory active inference torque control
Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst
A minimal code for fairseq vq-wav2vec model inference.
vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked
Local osu! server Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked (coming soon)! Windows Setup Insta
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU
Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode
This is a bot that can type without any assistance and have incredible speed.
BulldozerType This is a bot that can type without any assistance and have incredible speed. This bot currently only works on the site https://onlinety
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.
Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.
Validation and inference over LinkML instance data using souffle
Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022
PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed
A repository for benchmarking neural vocoders by their quality and speed.
License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.
An open source library for face detection in images. The face detection speed can reach 1000FPS.
libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Randomisation-based inference in Python based on data resampling and permutation.
Randomisation-based inference in Python based on data resampling and permutation.
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
A calculator for common measurements used in sci-fi books.
Sci-fi-speed-calculator A calculator for common measurements used in sci-fi books. Author: Tyler Windmemuth Purpose: This program allows sci-fi author