2059 Repositories
Python neural-scene-graphs Libraries
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch
Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch
MERLOT: Multimodal Neural Script Knowledge Models
merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's applied reinforcement learning platform, Reagent.
small collection of functions for neural networks
neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation
StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.
Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.
[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"
GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net
Sharpness-Aware Minimization for Efficiently Improving Generalization
Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim
Pytorch implementation of MaskFlownet
MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1
Benchmarks for semi-supervised domain generalization.
Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc
Neural Factorization of Shape and Reflectance Under An Unknown Illumination
NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.
Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne
SysInfo is an app developed in python which gives Basic System Info , and some detailed graphs of system performance .
SysInfo SysInfo is an app developed in python which gives Basic System Info , and some detailed graphs of system performance . Installation Download t
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"
Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati
Boosted neural network for tabular data
XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)
DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status
Deep learning-based approach to discovering Granger causality networks in multivariate time series
Granger causality discovery for neural networks.
Pytorch implementation of Generative Models as Distributions of Functions 🌿
Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models
SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-driven approaches built around these algorithms enable the simplification of creating faster and smaller models for the ML performance community at large.
🔬 A curated list of awesome machine learning strategies & tools in financial market.
🔬 A curated list of awesome machine learning strategies & tools in financial market.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)
SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug
Official code for "Mean Shift for Self-Supervised Learning"
MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."
Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.
Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.
Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021
AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration
jaxfg - Factor graph-based nonlinear optimization library for JAX.
Factor graphs + nonlinear optimization in JAX
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs.
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs, supporting both control flow and dataflow execution paradigms as well as de-centralized CPU & GPU scheduling.
Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"
Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021] Official PyTorch implementation
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"
Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs
KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont
neurodsp is a collection of approaches for applying digital signal processing to neural time series
neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also includes simulation tools for generating plausible simulations of neural time series.
Deep Learning Visuals contains 215 unique images divided in 23 categories
Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide".
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021
Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)
Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)
BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.
LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"
Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"
Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)
Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.
NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale
XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools
Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.
This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF implementation. Contact Jon Barron if you encounter any issues.
Language models are open knowledge graphs ( non official implementation )
language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".
Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021
PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms
FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)
mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer
NeRF Meta-Learning with PyTorch
NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co
Code for ICML 2021 paper: How could Neural Networks understand Programs?
OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search
LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra
Vision Transformer for 3D medical image registration (Pytorch).
ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio
Identify the emotion of multiple speakers in an Audio Segment
MevonAI - Speech Emotion Recognition
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/
Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"
Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs
Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)
Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse
Neural Dynamic Policies for End-to-End Sensorimotor Learning
This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit
Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra
pytorch-kaldi is a project for developing state-of-the-art DNN/RNN hybrid speech recognition systems. The DNN part is managed by pytorch, while feature extraction, label computation, and decoding are performed with the kaldi toolkit.
The PyTorch-Kaldi Speech Recognition Toolkit PyTorch-Kaldi is an open-source repository for developing state-of-the-art DNN/HMM speech recognition sys
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.
UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s
Phrase-Based & Neural Unsupervised Machine Translation
Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au
Sequence-to-Sequence Framework in PyTorch
nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
An easier way to build neural search on the cloud
Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the efficient patterns to build the system by parts, or chaining them into a Flow for an end-to-end experience.
A large-scale dataset of both raw MRI measurements and clinical MRI images
fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonymized knee and brain MRI datasets that can be downloaded from the fastMRI dataset page. Publications associated with the fastMRI project can be found at the end of this README.
SMPLpix: Neural Avatars from 3D Human Models
subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av
Learning Skeletal Articulations with Neural Blend Shapes
This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations with Neural Blend Shapes that is published in SIGGRAPH 2021.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform
An implementation of the paper "A Neural Algorithm of Artistic Style"
A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters
[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"
GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"
This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.
TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".
NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
PyTorch implementation of GLOM
GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)
End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.
A Practical Debugging Tool for Training Deep Neural Networks
Cockpit is a visual and statistical debugger specifically designed for deep learning!
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`
Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"
Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi
Just Go with the Flow: Self-Supervised Scene Flow Estimation
Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation
Graph Neural Networks for Recommender Systems
This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)
OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters
NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min