198 Repositories
Python probabilistic-forecasts-attacks Libraries
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.
Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.
META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.
Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us
Data Poisoning based on Adversarial Attacks using Non-Robust Features
Data Poisoning based on Adversarial Attacks using Non-Robust Features Usage python main.py [-h] [--gpu | -g GPU] [--eps |-e EPSILON] [--pert | -p PER
LeLeLe: A tool to simplify the application of Lattice attacks.
LeLeLe is a very simple library (300 lines) to help you more easily implement lattice attacks, the library is inspired by Z3Py (python interfa
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs
Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"
Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)
Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ ๐-๐๐ฆ๐ต, ๐๐๐๐ฆ๐ด๐๐ฆ๐ต) and a nested decoder structure with deep supervision (โ๐๐๐ฆ๐ต++).
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ ๐-๐๐ฆ๐ต, ๐๐๐๐ฆ๐ด๐๐ฆ๐ต) and a nested decoder structure with deep supervision (โ๐๐๐ฆ๐ต++). Built in TensorFlow 2.5. Configured for voxel-level clinically significant prostate cancer detection in multi-channel 3D bpMRI scans.
Bark Toolkit is a toolkit wich provides Denial-of-service attacks, SMS attacks and more.
Bark Toolkit About Bark Toolkit Bark Toolkit is a set of tools that provides denial of service attacks. Bark Toolkit includes SMS attack tool, HTTP
Extremely simple and fast extreme multi-class and multi-label classifiers.
napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).
source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training
First-Order Probabilistic Programming Language
FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee
High-quality implementations of standard and SOTA methods on a variety of tasks.
Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.
ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)
EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa
SocksFlood, a DoS tools that sends attacks using Socks5 & Socks4
Information SocksFlood, a DoS tools that sends attacks using Socks5 and Socks4 Requirements Python 3.10.0 A little bit knowledge of sockets IDE / Code
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.
SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"
StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"
This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.
Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.
Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning
A Python library for Deep Probabilistic Modeling
Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an
TextAttack ๐ is a Python framework for adversarial attacks, data augmentation, and model training in NLP
TextAttack ๐ Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About โข Setup โข Usage โข Design About TextAttack
Efficient Sparse Attacks on Videos using Reinforcement Learning
EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)
ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)
Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch
Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re
theHasher Tool created for generate strong and unbreakable passwords by using Hash Functions.Generate Hashes and store them in txt files.Use the txt files as lists to execute Brute Force Attacks!
$theHasher theHasher is a Tool for generating hashes using some of the most Famous Hashes Functions ever created. You can save your hashes to correspo
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery
ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).
DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t
Some Attacks of Exchange SSRF ProxyLogon&ProxyShell
Some Attacks of Exchange SSRF This project is heavily replicated in ProxyShell, NtlmRelayToEWS https://mp.weixin.qq.com/s/GFcEKA48bPWsezNdVcrWag Get 1
Emulate and Dissect MSF and *other* attacks
Need help in analyzing Windows shellcode or attack coming from Metasploit Framework or Cobalt Strike (or may be also other malicious or obfuscated code)? Do you need to automate tasks with simple scripting? Do you want help to decrypt MSF generated traffic by extracting keys from payloads?
Defending graph neural networks against adversarial attacks (NeurIPS 2020)
GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ([email protected]), Marinka Zitnik (marinka@hms.
Sum-Product Probabilistic Language
Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere
An all-in-one application to visualize multiple different local path planning algorithms
Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"
GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted
NU-Wave โ Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.
DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo
Python code for "Machine learning: a probabilistic perspective" (2nd edition)
Python code for "Machine learning: a probabilistic perspective" (2nd edition)
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some โค๏ธ by starring this repository!
Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms
Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models
Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S
Probabilistic Gradient Boosting Machines
PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.
Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX
SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo
Registration Loss Learning for Deep Probabilistic Point Set Registration
RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.
Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up
Implementation of Wasserstein adversarial attacks.
Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito
pyprobables is a pure-python library for probabilistic data structures
pyprobables is a pure-python library for probabilistic data structures. The goal is to provide the developer with a pure-python implementation of common probabilistic data-structures to use in their work.
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"
Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W
Deep Probabilistic Programming Course @ DIKU
Deep Probabilistic Programming Course @ DIKU
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems
RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a powerful, general probabilistic programming language for agent-behavior specification;
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 ๅคฉๆฑ ้ป็็ซ่ต
transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 ๅฎๅ จAIๆๆ่ ่ฎกๅ็ฌฌๅ ญๆ่ต้2๏ผImageNetๆ ้ๅถๅฏนๆๆปๅป ไป็ป ๏ผ ๆทฑๅบฆ็ฅ็ป็ฝ็ปๅทฒ็ปๅจๅ็ง่ง่ง่ฏๅซ้ฎ้ขไธๅๅพไบๆๅ ่ฟ็ๆง่ฝใ
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 ๅฎๅ จAIๆๆ่ ่ฎกๅ็ฌฌๅ ญๆ๏ผImageNetๆ ้ๅถๅฏนๆๆปๅป ๅณ่ต็ฌฌๅๅ๏ผteam name: Advers๏ผ
Image-Scaling Attacks and Defenses
Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang
Functional tensors for probabilistic programming
Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
โ๏ธ Measuring the accuracy of BBC weather forecasts in Honolulu, USA
Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t
Modular Probabilistic Programming on MXNet
MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo
The Python ensemble sampling toolkit for affine-invariant MCMC
emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense
Probabilistic Programming and Statistical Inference in PyTorch
PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The
Supervised domain-agnostic prediction framework for probabilistic modelling
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy
InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar
Release for Improved Denoising Diffusion Probabilistic Models
improved-diffusion This is the codebase for Improved Denoising Diffusion Probabilistic Models. Usage This section of the README walks through how to t
Big-Papa Integrates Javascript and python for remote cookie stealing which then can be used for session hijacking
Big-Papa is a remote cookie stealer which can then be used for session hijacking and Bypassing 2 Factor Authentication
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper
APT-Hunter is Threat Hunting tool for windows event logs
APT-Hunter is Threat Hunting tool for windows event logs which made by purple team mindset to provide detect APT movements hidden in the sea of windows event logs to decrease the time to uncover suspicious activity
fsociety Hacking Tools Pack โ A Penetration Testing Framework
Fsociety Hacking Tools Pack A Penetration Testing Framework, you will have every script that a hacker needs. Works with Python 2. For a Python 3 versi
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
The Python ensemble sampling toolkit for affine-invariant MCMC
emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense
Lightwood is Legos for Machine Learning.
Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)
Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap