79 Repositories
Python progressive-restoration Libraries
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)
MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.
Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal
Awesome Remote Sensing Toolkit based on PaddlePaddle.
基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥
SelfRemaster: SSL Speech Restoration
SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi
Official pytorch code for "APP: Anytime Progressive Pruning"
APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.
NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.
traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to
PyTorch implementation of "VRT: A Video Restoration Transformer"
VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".
SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre
This is the Pytorch implementation of Progressive Attentional Manifold Alignment.
PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.
[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,
A Quick and Dirty Progressive Neural Network written in TensorFlow.
prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.
(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).
BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).
Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation
Revisiting Global Statistics Aggregation for Improving Image Restoration
Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd
Revisiting Temporal Alignment for Video Restoration
Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"
NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B
Official Pytorch Code for the paper TransWeather
TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,
SwinIR: Image Restoration Using Swin Transformer
SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"
SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA results for single-image motion deblurring, image deraining, image denoising (synthetic and real data), and dual-pixel defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Blind visual quality assessment on 360° Video based on progressive learning
Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV
Official Python implementation of the 'Sparse deconvolution'-v0.3.0
Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen
Half Instance Normalization Network for Image Restoration
HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"
CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo
Image Restoration Using Swin Transformer for VapourSynth
SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t
MPRNet-Cloud-removal: Progressive cloud removal
MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the
Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.
Deep-FIR Codebase - Super Resolution Meta Attention Networks About This repository contains the main coding framework accompanying our work on meta-at
PWA is a simple Django app to develope and deploy a Progressive Web Application.
PWA PWA is a simple Django app to develope and deploy a Progressive Web Application. Detailed documentation is in the "docs" directory. Quick start Ad
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)
PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)
Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps
Edge Restoration Quality Assessment
ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (
Progressive Image Deraining Networks: A Better and Simpler Baseline
Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)
IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset
Multi-Scale Progressive Fusion Network for Single Image Deraining
Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc
Winning Solution in NTIRE19 Challenges on Video Restoration and Enhancement (CVPR19 Workshops) - Video Restoration with Enhanced Deformable Convolutional Networks. EDVR has been merged into BasicSR and this repo is a mirror of BasicSR.
EDVR has been merged into BasicSR. This GitHub repo is a mirror of BasicSR. Recommend to use BasicSR, and open issues, pull requests, etc in BasicSR.
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".
Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs
VoiceFixer VoiceFixer is a framework for general speech restoration.
VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper
Voicefixer aims at the restoration of human speech regardless how serious its degraded.
Voicefixer aims at the restoration of human speech regardless how serious its degraded.
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]
Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR
ERQA - Edge Restoration Quality Assessment
ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme
SwinIR: Image Restoration Using Swin Transformer
SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win
A curated list of resources for Image and Video Deblurring
A curated list of resources for Image and Video Deblurring
Progressive Coordinate Transforms for Monocular 3D Object Detection
Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020
TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)
Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages
Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot
Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi
Image restoration with neural networks but without learning.
Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021
PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil
GFPGAN is a blind face restoration algorithm towards real-world face images.
GFPGAN is a blind face restoration algorithm towards real-world face images.
Tensorflow implementation of MIRNet for Low-light image enhancement
MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu
(AAAI 2021) Progressive One-shot Human Parsing
End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"
Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.
CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,
HINet: Half Instance Normalization Network for Image Restoration
HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)
[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det
Progressive Domain Adaptation for Object Detection
Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.
News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:
PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu
(under submission) Bayesian Integration of a Generative Prior for Image Restoration
BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p
Old Photo Restoration (Official PyTorch Implementation)
Bringing Old Photo Back to Life (CVPR 2020 oral)
Analytics service that is part of iter8. Robust analytics and control to unleash cloud-native continuous experimentation.
iter8-analytics iter8 enables statistically robust continuous experimentation of microservices in your CI/CD pipelines. For in-depth information about
Multi-Stage Progressive Image Restoration
Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh