1365 Repositories
Python scribble-supervised-segmentation Libraries
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".
Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)
Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati
Fast image augmentation library and an easy-to-use wrapper around other libraries
Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.
Space Time Recurrent Memory Network - Pytorch
Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)
MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,
Implementation of UNET architecture for Image Segmentation.
Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".
A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.
Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.
MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"
[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022
Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition
SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted
SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021
MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc
Alleviating Over-segmentation Errors by Detecting Action Boundaries
Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)
Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train
A LiDAR point cloud cluster for panoptic segmentation
Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'
A simple approach to emable dense segmentation with ViT.
Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of
Segmentation models with pretrained backbones. PyTorch.
Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to
PyTorch framework for Deep Learning research and development.
Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)
Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im
Convolutional Neural Network for 3D meshes in PyTorch
MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)
Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec
Self-supervised learning on Graph Representation Learning (node-level task)
graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.
3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)
Kaggle: Cell Instance Segmentation
Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann
This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021
DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper
LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning
SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].
OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.
Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].
OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning
ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class
Dynamic Bottleneck for Robust Self-Supervised Exploration
Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution
TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation
Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn
Hippocampal segmentation using the UNet network for each axis
Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr
Retentioneering: product analytics, data-driven customer journey map optimization, marketing analytics, web analytics, transaction analytics, graph visualization, and behavioral segmentation with customer segments in Python.
What is Retentioneering? Retentioneering is a Python framework and library to assist product analysts and marketing analysts as it makes it easier to
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.
WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"
SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021
MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.
Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with
TagLab: an image segmentation tool oriented to marine data analysis
TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)
SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi
A PyTorch-based library for semi-supervised learning
News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]; [email protected]) for more information. We plan to add more
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》
CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor
Demystifying How Self-Supervised Features Improve Training from Noisy Labels
Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021
DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)
SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.
Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".
Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users
Copy Paste positive polyp using poisson image blending for medical image segmentation
Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.
COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'
DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link
Self-supervised Graph Learning for Recommendation
SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model
SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R
Kimimaro: Skeletonize Densely Labeled Images
Kimimaro: Skeletonize Densely Labeled Images # Produce SWC files from volumetric images. kimimaro forge labels.npy --progress # writes to ./kimimaro_o
CPC-big and k-means clustering for zero-resource speech processing
The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.
Weakly-supervised Text Classification Based on Keyword Graph
Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C
Retinal vessel segmentation based on GT-UNet
Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation
ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.
Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.
Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.
Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network
A PyTorch implementation of PointRend: Image Segmentation as Rendering
PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema
Unet network with mean teacher for altrasound image segmentation
Unet network with mean teacher for altrasound image segmentation
Video Object Segmentation(VOS) From Zero to HeroVideo Object Segmentation(VOS) From Zero to Hero
Video Object Segmentation(VOS) From Zero to Hero! Goal 1:train a two layers cnn model for vos. Finish! see model.py FFNet for more diteal.(2021.9.30)
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.
BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa
Self-Supervised Speech Pre-training and Representation Learning Toolkit.
What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site
UniSpeech - Large Scale Self-Supervised Learning for Speech
UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)
LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)
SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022
CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models
Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"
Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.
Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg
Continuous Conditional Random Field Convolution for Point Cloud Segmentation
CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c