2008 Repositories
Python segmentation-models Libraries
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.
简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生
Production First and Production Ready End-to-End Speech Recognition Toolkit
WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN
Mengzi Pretrained Models
中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。
Scalable training for dense retrieval models.
Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.
NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine
A framework to train language models to learn invariant representations.
Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)
PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》
CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor
Discovering and Achieving Goals via World Models
Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)
SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.
Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:
MIT-Machine Learning with Python–From Linear Models to Deep Learning
MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".
Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users
Copy Paste positive polyp using poisson image blending for medical image segmentation
Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
Kimimaro: Skeletonize Densely Labeled Images
Kimimaro: Skeletonize Densely Labeled Images # Produce SWC files from volumetric images. kimimaro forge labels.npy --progress # writes to ./kimimaro_o
CadQuery is an intuitive, easy-to-use Python module for building parametric 3D CAD models.
A python parametric CAD scripting framework based on OCCT
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac
Retinal vessel segmentation based on GT-UNet
Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.
PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation
ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme
Hapi is a Python library for building Conceptual Distributed Model using HBV96 lumped model & Muskingum routing method
Current build status All platforms: Current release info Name Downloads Version Platforms Hapi - Hydrological library for Python Hapi is an open-sourc
The Multi-Mission Maximum Likelihood framework (3ML)
PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.
Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo
A practical and feature-rich paraphrasing framework to augment human intents in text form to build robust NLU models for conversational engines. Created by Prithiviraj Damodaran. Open to pull requests and other forms of collaboration.
Parrot Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more t
PyPI package for scaffolding out code for decision tree models that can learn to find relationships between the attributes of an object.
Decision Tree Writer This package allows you to train a binary classification decision tree on a list of labeled dictionaries or class instances, and
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)
OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo
Analysis of rationale selection in neural rationale models
Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.
Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network
A PyTorch implementation of PointRend: Image Segmentation as Rendering
PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema
Unet network with mean teacher for altrasound image segmentation
Unet network with mean teacher for altrasound image segmentation
Video Object Segmentation(VOS) From Zero to HeroVideo Object Segmentation(VOS) From Zero to Hero
Video Object Segmentation(VOS) From Zero to Hero! Goal 1:train a two layers cnn model for vos. Finish! see model.py FFNet for more diteal.(2021.9.30)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)
LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.
Benchmarking the robustness of Spatial-Temporal Models
Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal
Codebase of deep learning models for inferring stability of mRNA molecules
Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models
Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022
Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.
Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat
Bayesian regularization for functional graphical models.
BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and
New approach to benchmark VQA models
VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.
CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"
Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal
HyperCube: Implicit Field Representations of Voxelized 3D Models
HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.
Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg
Continuous Conditional Random Field Convolution for Point Cloud Segmentation
CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c
The Official PyTorch Implementation of DiscoBox.
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is
LIVECell - A large-scale dataset for label-free live cell segmentation
LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.
Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision
a basic code repository for basic task in CV(classification,detection,segmentation)
basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.
Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
Pre-training BERT masked language models with custom vocabulary
Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.
Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression
cqMore is a CadQuery plugin based on CadQuery 2.1.
cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a text input. You can also specify the dimensions of the image. The process can take 3-20 mins and the results will be emailed to you.
DeepCAD: A Deep Generative Network for Computer-Aided Design Models
DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,
Perform oocyst segmentation in mercurochrome stained mosquito midgut
Midgut_oocyst_segmentation Perform oocyst segmentation in mercurochrome stained mosquito midguts This oocyst segmentation model also powers the webtoo
Training vision models with full-batch gradient descent and regularization
Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin
Blender addon to generate better building models from satellite imagery.
Blender addon to generate better building models from satellite imagery.
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"
RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"
TorchXRayVision: A library of chest X-ray datasets and models.
torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation
A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images
Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi
Explainer for black box models that predict molecule properties
Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries.
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)
Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd
Transfer-Learn is an open-source and well-documented library for Transfer Learning.
Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.
pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki
A Chinese to English Neural Model Translation Project
ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).
PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"
Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This
Model factory is a ML training platform to help engineers to build ML models at scale
Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"
Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)
EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th
A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
PINTO_model_zoo Please read the contents of the LICENSE file located directly under each folder before using the model. My model conversion scripts ar
A scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.
PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial PyTorch P
Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)
DeepNLP-models-Pytorch Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning) This is not for Pytorch be
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
A collection of various deep learning architectures, models, and tips
Deep Learning Models A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks. Traditiona
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
Quickly and easily create / train a custom DeepDream model
Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat