2008 Repositories
Python segmentation-models Libraries
Pytorch implementation of convolutional neural network visualization techniques
Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim
End-to-end image segmentation kit based on PaddlePaddle.
English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the AutoNUE@CVPR 2021 challenge, where
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.
Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
A Tools that help Data Scientists and ML engineers train and deploy ML models.
Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers
Add filters (background blur, etc) to your webcam on Linux.
Add filters (background blur, etc) to your webcam on Linux.
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.
GluonMM is a library of transformer models for computer vision and multi-modality research
GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon Research.
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
CondNet: Conditional Classifier for Scene Segmentation
CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21
FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.
TruthfulQA: Measuring How Models Imitate Human Falsehoods
TruthfulQA: Measuring How Models Imitate Human Falsehoods
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models
Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex
StarGAN - Official PyTorch Implementation (CVPR 2018)
StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"
Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.
Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.
Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo
DeepLab resnet v2 model in pytorch
pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come
Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque
Reinforcement learning models in ViZDoom environment
DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p
Sequence to Sequence Models with PyTorch
Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag
Pixel-wise segmentation on VOC2012 dataset using pytorch.
PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx
Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)
Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)
A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?
BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT
Code for evaluating Japanese pretrained models provided by NTT Ltd.
japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models
Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t
Segmentation for medical image.
EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol
A Django application that provides country choices for use with forms, flag icons static files, and a country field for models.
Django Countries A Django application that provides country choices for use with forms, flag icons static files, and a country field for models. Insta
A BitField extension for Django Models
django-bitfield Provides a BitField like class (using a BigIntegerField) for your Django models. (If you're upgrading from a version before 1.2 the AP
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction
FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig
This is a vision-based 3d model manipulation and control UI
Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo
A collection of SOTA Image Classification Models in PyTorch
A collection of SOTA Image Classification Models in PyTorch
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction
LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"
Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection
3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp
Object Moderation Layer
django-oml Welcome to the documentation for django-oml! OML means Object Moderation Layer, the idea is to have a mixin model that allows you to modera
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation
CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener
Must-read papers on improving efficiency for pre-trained language models.
Must-read papers on improving efficiency for pre-trained language models.
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)
Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"
JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"
Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit
Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)
ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)
语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) qust116-jq@qustx-X299-WU8:
Codebase for Diffusion Models Beat GANS on Image Synthesis.
Codebase for Diffusion Models Beat GANS on Image Synthesis.
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm
This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced in the paper titled "BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding".
BanglaBERT This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced i
Fourier-Bayesian estimation of stochastic volatility models
fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications
BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme
Code and checkpoints for training the transformer-based Table QA models introduced in the paper TAPAS: Weakly Supervised Table Parsing via Pre-training.
End-to-end neural table-text understanding models.
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation
Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.
deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation
Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss
A scalable implementation of WobblyStitcher for 3D microscopy images
WobblyStitcher Introduction A scalable implementation of WobblyStitcher Dependencies $ python -m pip install numpy scikit-image Visualization ImageJ
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.
Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.
FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically
FLAML - Fast and Lightweight AutoML
Lite-HRNet: A Lightweight High-Resolution Network
LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)
[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".
Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera
This repo uses a combination of logits and feature distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset.
PSPNet-logits and feature-distillation Introduction This repository is based on PSPNet and modified from semseg and Pixelwise_Knowledge_Distillation_P
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.
Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model
Add filters (background blur, etc) to your webcam on Linux.
webcam-filters Add filters (background blur, etc) to your webcam on Linux. Video conferencing applications tend to either lack video effects altogethe
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J
Ranking Models in Unlabeled New Environments (iccv21)
Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1
Semantic Segmentation with Pytorch-Lightning
This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)
🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)
pyntcloud is a Python library for working with 3D point clouds.
pyntcloud is a Python library for working with 3D point clouds.
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.
Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)
PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive
The official repository for our paper "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". We significantly improve the systematic generalization of transformer models on a variety of datasets using simple tricks and careful considerations.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Codes to pre-train Japanese T5 models
t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug