1262 Repositories
Python semantic-search-through-wikipedia-with-weaviate Libraries
implementation for paper "ShelfNet for fast semantic segmentation"
ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim
Understanding Convolution for Semantic Segmentation
TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)
Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s
RTSeg: Real-time Semantic Segmentation Comparative Study
Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S
Chainer Implementation of Semantic Segmentation using Adversarial Networks
Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution
A Kitti Road Segmentation model implemented in tensorflow.
KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark
Real-time Joint Semantic Reasoning for Autonomous Driving
MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"
Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz
Full Resolution Residual Networks for Semantic Image Segmentation
Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"
Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the
DeconvNet : Learning Deconvolution Network for Semantic Segmentation
DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement
PyTorch implementation of PSPNet
PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe
TensorFlow-based implementation of "Pyramid Scene Parsing Network".
PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo
PSPNet in Chainer
PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for
Pytorch code for semantic segmentation using ERFNet
ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.
ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation
Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".
ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images
Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018
ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at http://www.cs.cmu.edu/~aayushb/pixelNet/.
PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f
Dilated Convolution for Semantic Image Segmentation
Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.
FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th
Fully Convolutional DenseNets for semantic segmentation.
Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense
TensorFlow implementation of ENet, trained on the Cityscapes dataset.
segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN
A TensorFlow implementation of FCN-8s
FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.
semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset
Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the
Fully convolutional networks for semantic segmentation
FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo
Pytorch for Segmentation
Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation
##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation
FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation
FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)
Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.
Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC
DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC
PyTorch Implementations for DeeplabV3 and PSPNet
Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor
Train DeepLab for Semantic Image Segmentation
Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected] This repository contains scripts for training DeepLab for Semantic I
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.
DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up
DeepLab-ResNet rebuilt in TensorFlow
DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.
DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras
SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling
Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A
Semantic segmentation models, datasets and losses implemented in PyTorch.
Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm
Real-Time Semantic Segmentation in Mobile device
Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur
Example Of Splunk Search Query With Python And Splunk Python SDK
SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c
Stack overflow search API
Stack overflow search API
Keyword-BERT: Keyword-Attentive Deep Semantic Matching
project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r
Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.
Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.
How to use Microsoft Bing to search for leaks?
Installation In order to install the project, you need install its dependencies: $ pip3 install -r requirements.txt Add your Bing API key to bingKey.t
💬 Send iMessages using Python through the Shortcuts app.
py-imessage-shortcuts Send iMessages using Python through the Shortcuts app. Requires macOS Monterey (macOS 12) or later. Compatible with Apple Silico
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python
Facial Image Inpainting with Semantic Control
Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u
Simple python bot, that notifies about new manga chapters through Telegram.
Simple python bot, that notifies about new manga chapters through Telegram.
Code for generating alloy / disordered structures through the special quasirandom structure (SQS) algorithm
Code for generating alloy / disordered structures through the special quasirandom structure (SQS) algorithm
Wikipedia Extractive Text Summarizer + Keywords Identification (entropy-based)
Wikipedia Extractive Text Summarizer + Keywords Identification (entropy-based)Wikipedia Extractive Text Summarizer + Keywords Identification (entropy-based)
A python youtube search module
A python youtube search module
For AILAB: Cross Lingual Retrieval on Yelp Search Engine
Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_
Multi-View Radar Semantic Segmentation
Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)
Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).
Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation
Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.
DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)
Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"
PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction
FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig
ICCV2021 Papers with Code
ICCV2021 Papers with Code
Implement SAST + DAST through Github actions
Implement SAST + DAST through Github actions The repository is supposed to implement SAST+DAST checks using github actions against a vulnerable python
Open Source Discord bot with many cool features like Weather, Balance, Avatar, User, Server, RP-commands, Gif search, YouTube search, VK post search etc.
Сокобот Дискорд бот с открытым исходным кодом. Содержит в себе экономику, полезные команды (!аватар, !юзер, !сервер и тд.), рп-команды (!обнять, !глад
BREP : Binary Search in plaintext and gzip files
BREP : Binary Search in plaintext and gzip files Search large files in O(log n) time using binary search. We support plaintext and Gzipped files. Benc
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.
Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops
reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [kunal@Gordonfreeman]$ bash sc
Desktop application for Windows/macOS users to rotate through custom, preset, and searched-for collections of backgrounds with scheduling and additional settings
Background Revolution (In Development, Alpha Release) What? This will be an application for users to customize their windows backgrounds by uploading
Multifunctional Analysis of Regions through Input-Output
MARIO Multifunctional Analysis of Regions through Input-Output. (Documents) What is it MARIO is a python package for handling input-output tables and
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).
RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc
Python-Stock-Info-CLI: Get stock info through CLI by passing stock ticker.
Python-Stock-Info-CLI Get stock info through CLI by passing stock ticker. Installation Use the following command to install the required modules at on
Search a video semantically with AI.
Which Frame? Search a video semantically with AI. For example, try a natural language search query like "a person with sunglasses". You can also searc
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision
What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T
On-device speech-to-index engine powered by deep learning.
On-device speech-to-index engine powered by deep learning.
A wrapper for aqquiring Choice Coin directly through a Python Terminal. Leverages the TinyMan Python-SDK.
CHOICE_TinyMan_Wrapper A wrapper that allows users to acquire Choice Coin directly through their Terminal using ALGO and various Algorand Standard Ass
A python program capable of accessing passwords associated with emails through leaked databases.
passfind A python program capable of accessing passwords associated with emails through leaked databases. A python program capable of accessing passwo
A pytorch-based real-time segmentation model for autonomous driving
CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search
One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec
Caboto, the Kubernetes semantic analysis tool
Caboto Caboto, the Kubernetes semantic analysis toolkit. It contains a lightweight Python library for semantic analysis of plain Kubernetes manifests
A multithreaded tool for searching and downloading images from popular search engines. It is straightforward to set up and run!
🕳️ CygnusX1 Code by Trong-Dat Ngo. Overviews 🕳️ CygnusX1 is a multithreaded tool 🛠️ , used to search and download images from popular search engine
A simple pytorch pipeline for semantic segmentation.
SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt
A file utility for accessing both local and remote files through a unified interface.
A file utility for accessing both local and remote files through a unified interface.
A python library for highly configurable transformers - easing model architecture search and experimentation.
A python library for highly configurable transformers - easing model architecture search and experimentation.
A python tool to Automate Whatsapp through Whatsapp web
This python tool is used to Automate Whatsapp through Whatsapp web. We can add number of contacts whom we want to send text messages on perticular time
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach
Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu
Implicit Model Specialization through DAG-based Decentralized Federated Learning
Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp
Repository for the semantic WMI loss
Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.
META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation
K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a
Searching info from Google using Python Scrapy
Python-Search-Engine-Scrapy || Python-爬虫-索引/利用爬虫获取谷歌信息**/ Searching info from Google using Python Scrapy /* 利用 PYTHON 爬虫获取天气信息,以及城市信息和资料**/ translatio