765 Repositories
Python semi-supervised-methods Libraries
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".
ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li
Use deep learning, genetic programming and other methods to predict stock and market movements
StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"
How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod
Semi-supervised Learning for Sentiment Analysis
Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)
DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)
wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning
Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images
SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio
Statistical package in Python based on Pandas
Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.
Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
A library of extension and helper modules for Python's data analysis and machine learning libraries.
Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.
News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i
High-performance TensorFlow library for quantitative finance.
TF Quant Finance: TensorFlow based Quant Finance Library Table of contents Introduction Installation TensorFlow training Development roadmap Examples
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"
Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.
Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining
Text recognition (optical character recognition) with deep learning methods.
What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.
awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition
STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net
Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text Recognition"
SEE: Towards Semi-Supervised End-to-End Scene Text Recognition Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.
Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.
LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.
SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.
TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)
Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O
Implementation of Barlow Twins paper
barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in
Multiple Pairwise Comparisons (Post Hoc) Tests in Python
scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal
SigOpt wrappers for scikit-learn methods
SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In
A library for hidden semi-Markov models with explicit durations
hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch
PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari
Supervised domain-agnostic prediction framework for probabilistic modelling
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
A library of extension and helper modules for Python's data analysis and machine learning libraries.
Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.
Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman
Autonomous Driving project for Euro Truck Simulator 2
hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag
Puzzle-CAM: Improved localization via matching partial and full features.
Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection
Weakly Supervised Learning of Rigid 3D Scene Flow
Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D
TickerRain is an open-source web app that stores and analysis Reddit posts in a transparent and semi-interactive manner.
TickerRain is an open-source web app that stores and analysis Reddit posts in a transparent and semi-interactive manner
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
Inspects Python source files and provides information about type and location of classes, methods etc
prospector About Prospector is a tool to analyse Python code and output information about errors, potential problems, convention violations and comple
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat
A PyTorch Toolbox for Face Recognition
FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat
Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks
SupCon-Framework The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning
◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Toolbox of models, callbacks, and datasets for AI/ML researchers.
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main
A library of extension and helper modules for Python's data analysis and machine learning libraries.
Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc
pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.
Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)
Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
A python library for self-supervised learning on images.
Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi
Inspects Python source files and provides information about type and location of classes, methods etc
prospector About Prospector is a tool to analyse Python code and output information about errors, potential problems, convention violations and comple