1236 Repositories
Python stochastic-volatility-models Libraries
A python library for easy manipulation and forecasting of time series.
Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
ARCH models in Python
arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies.
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technol
Technical Analysis Library using Pandas and Numpy
Technical Analysis Library in Python It is a Technical Analysis library useful to do feature engineering from financial time series datasets (Open, Cl
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample
Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)
Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning
CDIoU and CDIoU loss is like a convenient plug-in that can be used in multiple models. CDIoU and CDIoU loss have different excellent performances in several models such as Faster R-CNN, YOLOv4, RetinaNet and . There is a maximum AP improvement of 1.9% and an average AP of 0.8% improvement on MS COCO dataset, compared to traditional evaluation-feedback modules. Here we just use as an example to illustrate the code.
CDIoU-CDIoUloss CDIoU and CDIoU loss is like a convenient plug-in that can be used in multiple models. CDIoU and CDIoU loss have different excellent p
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.
Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.
Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.
Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)
SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。
MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.
(under submission) Bayesian Integration of a Generative Prior for Image Restoration
BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations
🦉Data Version Control | Git for Data & Models
Website • Docs • Blog • Twitter • Chat (Community & Support) • Tutorial • Mailing List Data Version Control or DVC is an open-source tool for data sci
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"
Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"
Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go
Beyond the Imitation Game collaborative benchmark for enormous language models
BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t
Django project starter on steroids: quickly create a Django app AND generate source code for data models + REST/GraphQL APIs (the generated code is auto-linted and has 100% test coverage).
Create Django App 💛 We're a Django project starter on steroids! One-line command to create a Django app with all the dependencies auto-installed AND
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper
Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage
🎯 A comprehensive gradient-free optimization framework written in Python
Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not
A library for hidden semi-Markov models with explicit durations
hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens
Interpretability and explainability of data and machine learning models
AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase
FairML - is a python toolbox auditing the machine learning models for bias.
======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive
Algorithms for monitoring and explaining machine learning models
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow
tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso
Datasets, Transforms and Models specific to Computer Vision
torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco
[HELP REQUESTED] Generalized Additive Models in Python
pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models
Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
OpenChat: Opensource chatting framework for generative models
OpenChat is opensource chatting framework for generative models.
A Python library that helps data scientists to infer causation rather than observing correlation.
A Python library that helps data scientists to infer causation rather than observing correlation.
A wiki system with complex functionality for simple integration and a superb interface. Store your knowledge with style: Use django models.
django-wiki Django support The below table explains which Django versions are supported. Release Django Upgrade from 0.7.x 2.2, 3.0, 3.1 0.5 or 0.6 0.
🦉Data Version Control | Git for Data & Models
Website • Docs • Blog • Twitter • Chat (Community & Support) • Tutorial • Mailing List Data Version Control or DVC is an open-source tool for data sci
Admin Panel for GinoORM - ready to up & run (just add your models)
Gino-Admin Docs (state: in process): Gino-Admin docs Play with Demo (current master 0.2.3) Gino-Admin demo (login: admin, pass: 1234) Admin
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
Release for Improved Denoising Diffusion Probabilistic Models
improved-diffusion This is the codebase for Improved Denoising Diffusion Probabilistic Models. Usage This section of the README walks through how to t
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
Reviving Iterative Training with Mask Guidance for Interactive Segmentation
This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.
ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.
Pre-trained NFNets with 99% of the accuracy of the official paper
NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
Facilitating the design, comparison and sharing of deep text matching models.
MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News
🏖 Easy training and deployment of seq2seq models.
Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
Super easy library for BERT based NLP models
Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor
A full spaCy pipeline and models for scientific/biomedical documents.
This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia
State of the Art Natural Language Processing
Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o
The open-source tool for building high-quality datasets and computer vision models
The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun
Inner ear models for Python
cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au
NO LONGER MAINTAINED - A Flask extension for creating simple ReSTful JSON APIs from SQLAlchemy models.
NO LONGER MAINTAINED This repository is no longer maintained due to lack of time. You might check out the fork https://github.com/mrevutskyi/flask-res
TransGAN: Two Transformers Can Make One Strong GAN
[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).
A dynamic FastAPI router that automatically creates CRUD routes for your models
⚡ Create CRUD routes with lighting speed ⚡ A dynamic FastAPI router that automatically creates CRUD routes for your models Documentation: https://fast
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.
ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin
Simple SDF mesh generation in Python
Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.
A standard framework for modelling Deep Learning Models for tabular data
PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.
Official code for Score-Based Generative Modeling through Stochastic Differential Equations
Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen
CPU inference engine that delivers unprecedented performance for sparse models
The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper
Facilitating the design, comparison and sharing of deep text matching models.
MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News
🏖 Easy training and deployment of seq2seq models.
Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
Super easy library for BERT based NLP models
Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor
A full spaCy pipeline and models for scientific/biomedical documents.
This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...
Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran
State of the Art Natural Language Processing
Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o
The open-source tool for building high-quality datasets and computer vision models
The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
Turi Create simplifies the development of custom machine learning models.
Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
NO LONGER MAINTAINED - A Flask extension for creating simple ReSTful JSON APIs from SQLAlchemy models.
NO LONGER MAINTAINED This repository is no longer maintained due to lack of time. You might check out the fork https://github.com/mrevutskyi/flask-res
A dynamic FastAPI router that automatically creates CRUD routes for your models
⚡ Create CRUD routes with lighting speed ⚡ A dynamic FastAPI router that automatically creates CRUD routes for your models Documentation: https://fast
Automatic caching and invalidation for Django models through the ORM.
Cache Machine Cache Machine provides automatic caching and invalidation for Django models through the ORM. For full docs, see https://cache-machine.re
Declarative model lifecycle hooks, an alternative to Signals.
Django Lifecycle Hooks This project provides a @hook decorator as well as a base model and mixin to add lifecycle hooks to your Django models. Django'
Automatically deletes old file for FileField and ImageField. It also deletes files on models instance deletion.
Django Cleanup Features The django-cleanup app automatically deletes files for FileField, ImageField and subclasses. When a FileField's value is chang
A Django application that provides country choices for use with forms, flag icons static files, and a country field for models.
Django Countries A Django application that provides country choices for use with forms, flag icons static files, and a country field for models. Insta
Money fields for Django forms and models.
django-money A little Django app that uses py-moneyed to add support for Money fields in your models and forms. Django versions supported: 1.11, 2.1,
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to
Simple and rapid application development framework, built on top of Flask. includes detailed security, auto CRUD generation for your models, google charts and much more. Demo (login with guest/welcome) - http://flaskappbuilder.pythonanywhere.com/
Flask App Builder Simple and rapid application development framework, built on top of Flask. includes detailed security, auto CRUD generation for your
The Web framework for perfectionists with deadlines.
Django Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. Thanks for checking it out. All docu
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.
GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun